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SIFT BACKGROUND

Scale-invariant feature transform
SIFT: to detect and describe local features 1in an images.
Proposed by David Lowe in ICCV1999.

Refined in IJCV 2004.
Cited more than 65953 times till now(March 2022).

Wildly used in image search, object recognition, video
tracking, gesture recognition, etc.



WHY SIFT IS SO POPULAR?

An 1nstance of object matching




WHY SIFT 1S SO POPULAR?

Desired property of SIFT
Invariant to scale change
Invariant to rotation change
Invariant to illumination change
Robust to addition of noise
Robust to substantial range of affine transformation
Robust to 3D view point
Highly distinctive for discrimination



CLAIMED ADVANTAGES OF SIFT

Locality: features are local, so robust to
occlusion and clutter (no prior segmentation)

Distinctiveness: individual features can be
matched to a large database of objects

Quantity: many features can be generated
for even small objects

Efficiency: close to real-time performance



MAJOR STAGES OF SIFT COMPUTATION

Scale-space extrema detection
Keypoint localization
Orientation assignment
Keypoint descriptor



How TO EXTRACT SIFT

i I 1

Test image Detector: where Descriptor:
are the local how to describe
features? them?




SIFT DETECTOR

—>

o Desired properties for detector
» Position: Repeatable across different changes

» Scale: automatic scale estimation

o Intuition: Find scale that gives local maxima of
some function f in both position and scale.
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WHAT CAN BE THE “SIGNATURE” FUNCTION F?

Laplacian-of-Gaussian = “blob” detector
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AT A GIVEN POINT IN THE IMAGE:

We define the characteristic scale as the scale that
produces peak of Laplacian response

characteristic\ scale
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TECHNICAL DETAIL

o We can approximate the Laplacian with a
difference of Gaussians; more efficient to
1mplement.

(Laplacian)

(Difference of Gaussians)

I (ko) 1(0) I (ko)~1 (o)




octave) -

ol
,_,
sale | g2 e L=
e |
=
rer

——
—
T S S S S
— o - S S S —_— _———_—
il ol o A S S
—
-

Scale | —mmmm—=——===== 0 gt RS

(first ~

octave)

Difference of
Gaussian Gaussian (DOG)

For each octave of scale space, the initial image is repeatedly convolved with
Gaussians to produce the set of scale images shown on the left. Adjacent
Gaussian images are subtracted to produce the difference-of-Gaussian images

on the right. After each octave, the Gaussian image 1s down-sampled by a faetor
2, and the process repeated.



LOWE’'S PYRAMID SCHEME
« Scale space Is separated into octaves:
e Octave 1 uses scale o
« Octave 2 uses scale 2c
. etc.

* In each octave, the initial image is repeatedly convolved
with Gaussians to produce a set of scale space images.

» Adjacent Gaussians are subtracted to produce the DOG

* After each octave, the Gaussian image is down-sampled
by a factor of 2 to produce an image % the size to start
the next level.
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LOCAL EXTREMA DETECTION
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FREQUENCY OF SAMPLING IN DOMAIN

Trade-off between sampling frequency and rate of

detection
Sigma=1.6

Repeatability (%)
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ELIMINATING EDGE RESPONSES

Motivation
DoG aims to detect “blob”.
DoG function have a strong response along edges.
Remove such key points by Hessian Matrix analysis

Hessian matrix
Formulation
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ELIMINATING EDGE RESPONSES

TrH) = Dyp + Dy = v + 3,
DET(H]I — DIIEUU — (.Dry:lg — Iﬂ:'luj.

a a:larger eigenvalue
a=1r3 B : smaller eigenvalue

Tr(H)?  (r+1)3

Det(H) T

r = 10 for this experimants



ORIENTATION

Gradient and angle:

m(x,y) = Y(LE+Ly) - L(x -Ly)* + (L(x,y +D - L(x,y - 1)
G(x,y)=atan2((L(x,y +1)— L{x,y -1 L(x+1,¥y)— L(x—1,¥)))

Orientation selection
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SIFT DESCRIPTOR

o Making descriptor rotation invariant

* Rotate patch according to its dominant gradient orientation
« This puts the patches into a canonical orientation. @
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SIFT DESCRIPTOR

o Use histograms to bin pixels within sub-patches
according to their orientation.

*

Image gradients Keypoint descriptor




SUMMARY OF SIFT FEATURE

Descriptor: 128-D

4 by 4 patches, each with 8-D gradient angle
histogram:
4X4XE = 128

Normalized to reduce the effects of illumination
change.

Position: (x, y)
Where the feature 1s located at.

Scale
Control the region size for descriptor extraction.

Orientation
To achieve rotation-invariant descriptor.



LOCAL FEATURES

@ Detection: Identify the interest points.
@ Description: Extract vector feature descriptor around each interest point.

@ Matching: Determine correspondence between descriptors in two views.




MATCHING LOCAL FEATURES

@ lo generate candidate matches, find patches that have the most similar
appearance (e.g., lowest SSD)

@ Simplest approach: compare them all, take the closest (or closest k, or
within a thresholded distance)




AMBIGUOUS MATCHES

@ At what SSD value do we have a good match?

@ To add robustness, consider ratio of distance to best match to distance to
second best match

o If low, first match looks good.
o If high, could be ambiguous match.

Closest / NextClosest< threshold(0.6 for example)




