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OPTIMIZATION FOR CONSTRAINED
PROBLEMS, EQUALITY CONSTRAINTS
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Example Maximize f(xy,x2) = r1x9 subject to h(xy, x2) = 21 + 425 = 16.

Solution: Form the Lagrangian
L(:L‘l,:rg) = Irre — A (331 + 4332 — 16)

The first order conditions are

dL
d—ml:mg—)«:[}
dL

A =0
dro 1
dL

= 4y —16=0

(:Ela L2, }‘) — (83 21 2)
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EXCERCISE

Maximize f(z, vy, z) = zyz subject to

hi(z,y,z) =22 +y? =1and he(z.y,z) =z +2 = 1.
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OPTIMIZATION FOR CONSTRAINED
PROBLEMS INEQUALITY CONSTRAINTS
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minimize J(0)
subjectto f;(0)=0, i=1,2,....,m (C.29)
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KARUSH KUHN TUCKER (KKT) CONDITIONS

calpo I A o ol g Loyl T jo allus bg o aS 0l slakass B, 10
il Golo LSl (gl 0 0,lge a5 5510 g4 51,5Y

17
1 —L@O,A) =0
(D 70 (0+.N)

(2) A;=0, i=1,2,....,m
3 Aifi(@) =0, i=1,2....m
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LAGRANGIAN DUALITY

minimize J(0)
subjectto fi()=0, i=1,2,..., m

The Lagrangian function is

m

LO,M) =JO) = ) _ \ifi(0) (C.35)

i=1

Let
L) = mAax L(6.A) (C.36)
However, since A = 0 and f;(8) = 0, the maximum value of the Lagrangian occurs
if the summation in (C.35) is zero (either A; = 0 or f;(8) = 0 or both) and
L£*6) = J () (C.37)
Therefore our original problem is equivalent with

min /() = min max £(0,A) (C.38)
6 6 A=0

As we already know, the dual problem of the above is

max min £(6,A) (C.39)
A=0 6




LAGRANGIAN DUALITY

Wolfe Dual Representation

A convex programming problem is equivalent to

max L£(6,A)
A=0

d
bjectto —L(0,A) =0
subject to Py (6,A)

The last equation guarantees that € is a minimum of the Lagrangian.
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Example C.1

Consider the quadratic problem
minimize %ﬂrﬂ
subjectto A0 =b
This is a convex programming problem; hence the Wolfe dual representation is valid:
maximize %Hrﬂ — AT - b
subjectto 8 —A'A =0

For this example, the equality constraint has an analytic solution (this is not, however, always
possible). Solving with respect to 8, we can eliminate it from the maximizing function and the
resulting dual problem involves only the Lagrange multipliers,

1 ..
max { —-ATA47A +.«'I.Tb}
A 2

subjectto A=0

This is also a quadratic problem but the set of constraints is now simpler.
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b eassSlas

The goal is to design a hyperplane
g(x) = wlx+wy=0

that classifies correctly all the training vectors. As we have already discussed
in Section 3.3, such a hyperplane is not unique. The perceptron algorithm may
converge to any one of the possible solutions.
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GENERALIZATION

direction 2

1

2

-

linearly separable two-class problem with two possible linear classifiers 1
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SVM STEPS: SCALE

the distance of a point from a hyperplane is given by

_ g
]|

Z

We can now scale w, wy so that the value of g(x), at the nearest points in @, w;
(circled in Figure 3.10), is equal to 1 for w; and, thus, equal to —1 for w>. This is
equivalent with

: - 1 1 _ 2
- [ V [ [ —l_ = Maasll
1. Having a margin of ror T T 0|
2. Requiring that
w! x + wo =1, Vx € w

w x+wy=-1, Vxecw
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SVM STEPS: MINIMIZING THE NORM

Compute the parameters w, wy of the hyperplane so that to:

minimize J(w, wo) = —|w|*

o | =

subject to j-’f('*ﬂfrxf +~up)=1, i=1,2,....N

Obviously, minimizing the norm makes the margin maximum. This is a nonlinear
(quadratic) optimization task subject to a set of linear inequality constraints.
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SVM STEPS: KK'T CONDITION AND LAGRANGIAN
FUNCTION

N
1
L(w,wo,A) = ;wrw — ZA,-[),r,-('u;T.x; + wo) — 1]

i=1
d _
P L(w,wy,A) =0 KKT Conditions
— | d

9 ~ (1) —L@O.,,A) =0
p E(w, H-‘{],A) =0 70

o / 2 Ai=0, i=1,2,..., m

AIE(L i = ]_12 +++++ N ’(5) )t;‘f;(e:{:):oa i = 1,2,...,1”‘1
Nlyiw! x; +wo)—11=0, i=12_... N
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SVM STEPS: KKT CONDITION AND
L AGRANGIAN FUNCTION

L(w.wo.A) = ;w[ w — Z)&;‘[]';’(It-’! x; + wo) — 1]

=1

O’ur[’(w wo,A) =0 ::> w = Z/\f)fxf

—ll(w wo,A) = 0 1 r — ZI\.—I’: =0
dio
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WOLFE DUAL

JINI'
. | | 1
maximize J‘f:( w, iy, )L) max E )’L;‘ — ; E Aiﬁfjjilffxf-%

i=1

N
subjectto w = Z){ iViXi

N
= subject to Zﬁ;_}ff = 0
N i=1
Y Ayi=0
i=1 A=0
A=0
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SUPPORT VECTORS

The Lagrange multipliers can be either zero or positive (Appendix C). Thus, the
vector parameter w of the optimal solution is a linear combination of Ny = N
feature vectors that are associated with A; # 0. That is,

N
w = Z/\f}’fx! (3.81)
=1

These are known as support vectors and the optimum hyperplane classifier as
asupport vector machine (SVM). As it is pointed out inAppendix C,a nonzero
Lagrange multiplier corresponds to a so called active constraint. Hence, as the
set of constraints in (3.77) suggests for A; # 0, the support vectors lie on
either of the two hyperplanes, that is,

w! x + wy = +1 (3.82)
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NON-SEPARABLE CLASSES
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THE TRAINING FEATURE VECTORS NOW BELONG TO
ONE OF THE FOLLOWING THREE CATEGORIES

m Vectors that fall outside the band and are correctly classified. These vectors
comply with the constraints in (3.73).

m Vectors falling inside the band and are correctly classified. These are the points
placed in squares in Figure 3.11,and they satisfy the inequality

0=y’ x+wo)<1

m Vectors that are misclassified. They are enclosed by circles and obey the
inequality

_-),-',-('wa + wp) <0

All three cases can be treated under a single type of constraints by introducing
new set of variables, namely;,

J’z‘[u’rx +wol=1-4§
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C-SVM

The first category of data corresponds to & = 0, the second to 0 < & = 1, and the
third to & > 1. The variables &; are known as slack variables. The optimizing task
becomes more involved, yet it falls under the same rationale as before. The goal now
is to make the margin as large as possible but at the same time to keep the number
of points with & > 0 as small as possible. In mathematical terms, this is equivalent
to adopting to minimize the cost function

N
R B | oo
Jaw.wo & = Slwl® +C Y1) (3.91)

i=1

where £ is the vector of the parameters &; and

‘ L) &=0 |
Xi IEo=14 ¢ =0 (3.92)
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C-svMm

The parameter C is a positive constant that controls the relative influence of the two
competing terms. However, optimization of the above is difficult since it involves a

discontinuous function /(). As it is common in such cases, we choose to optimize
a closely related cost function, and the goal becomes

N

. | o1 > : o

minimize J(w,wo, &) = Ellw” + C;& (3.93)
i

subject to J;—';[urr.x,- +wol=1-¢, i=12....N (3.94)

&E=0, i=1,2,....N (3.95)
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C-SVM

N N
1
L(w,wop, &N, p) = E||w||2 + (TZ& - Z}Lf&
i=1 i=1
N
— Z)L,- []',-(th.x',- +wp) — 1+ &] (3.906)
i=1

The corresponding Karush-Kuhn-Tucker conditions are

N

dL
— =0 or w= Z)Lf‘]’fx;' (3.97)

o

i=1
3 N
—— =0 or Aivi = 0 3.98
g ; iVi ( )
AL ) :
— =0 or C —,u.;-—)l,- =0, i = 1.2,...,;"‘5 (59")\}
dft’

&f[]’;('u.!rxf +wg)—1+&)1=0, i=1.2 ... N (3.100)
wiki =0, i=1,2....N (3.101)
wi =0, =0, i=1,2...,N (3.102)
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C-SVM

Wolfe dual representation now becomes

maximize L(w,wo.A, €, w)

N
subjectto w = ZA,-_}-',-J:;
i=1
N *
Z-’tf.l’;' =0
i=1
C—wi— A =0, i=1,2,..., N

)l.g' = O, M = {}..
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1
max E Ay — 5 E /\f}‘f)"'f}’ffxf"‘}
A D Ty

N
subject to Z/\,‘y,- =0

i=1

A=0

v

N
1
max E Ai — 5 E _A,-Aj_w_lyxrxj

O0=A;=C, i=1,2,....N

N
Z Aiyi = 0
i=1

subject to




DIFFERENT C
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(a) (b)

An example of two nonseparable classes and the resulting SVM linear classifier (full line) with
the associated margin (dotted lines) for the values (a) ¢ = 0.2 and (b) ¢ = 1000. In the latter
case, the location and direction of the classifier as well as the width of the margin have changed
in order to include a smaller number of points inside the margin.
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The width of the margin does not depend entirely on the data
distribution, but is heavily affected by the choice of C.

This is the reason SVM classifiers, defined by are also known
as soft margin classifiers.
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