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Data Mining

Lecture 15: 

Center-based Clustering
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K-means Clustering

Partitional clustering approach 
Each cluster is associated with a centroid (center point) 
Each point is assigned to the cluster with the closest 
centroid
Number of clusters, K, must be specified
The basic algorithm is very simple
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K-means Clustering – Details

Initial centroids are often chosen randomly.
– Clusters produced vary from one run to another.

The centroid is (typically) the mean of the points in the 
cluster.
‘Closeness’ is measured by Euclidean distance, cosine 
similarity, correlation, etc.
K-means will converge for common similarity measures 
mentioned above.
Most of the convergence happens in the first few 
iterations.

– Often the stopping condition is changed to ‘Until relatively few 
points change clusters’

Complexity is O( n * K * I * d )
– n = number of points, K = number of clusters, 

I = number of iterations, d = number of attributes
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Evaluating K-means Clusters

Most common measure is Sum of Squared Error (SSE)
– For each point, the error is the distance to the nearest cluster
– To get SSE, we square these errors and sum them.

– x: a data point in cluster Ci, xj is the jth attribute of x, and mi
j is 

the jth attribute of the representative point for cluster Ci
can show that mi

j corresponds to the center of the cluster
– Given two clusters, we can choose the one with the smallest 

error
– One easy way to reduce SSE is to increase K, the number of 

clusters
A good clustering with smaller K can have a lower SSE than a poor 

clustering with higher K
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Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids …
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Importance of Choosing Initial Centroids …
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Problems with Selecting Initial Points

If there are K ‘real’ clusters then the chance of selecting 
one centroid from each cluster is small. 

– Chance is relatively small when K is large
– If clusters are the same size, n, then

– For example, if K = 10, then probability = 10!/1010 = 0.00036
– Sometimes the initial centroids will readjust themselves in 

‘right’ way, and sometimes they don’t
– Consider an example of five pairs of clusters
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.
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Solutions to Initial Centroids Problem

Multiple runs
– Helps, but probability is not on your side

Sample and use hierarchical clustering to 
determine initial centroids
Select more than k initial centroids and then 
select among these initial centroids
– Select most widely separated

Postprocessing
Bisecting K-means
– Not as susceptible to initialization issues
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Updating Centers Incrementally

In the basic K-means algorithm, centroids are 
updated after all points are assigned to a centroid

An alternative is to update the centroids after 
each assignment (incremental approach)
– Each assignment updates zero or two centroids
– More expensive
– Introduces an order dependency
– Never get an empty cluster
– Can use “weights” to change the impact
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Pre-processing and Post-processing

Pre-processing
– Normalize the data
– Eliminate outliers

Post-processing
– Eliminate small clusters that may represent outliers
– Split ‘loose’ clusters, i.e., clusters with relatively high 

SSE
– Merge clusters that are ‘close’ and that have relatively 

low SSE
– Can use these steps during the clustering process

ISODATA
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Limitations of K-means

K-means has problems when clusters are of 
differing 
– Sizes
– Densities
– Non-globular shapes

K-means has problems when the data contains 
outliers.
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Limitations of K-means: Differing Sizes

K-means (3 Clusters)Original Points
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Limitations of K-means: Differing Density

K-means (3 Clusters)Original Points
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Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)
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Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.
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Overcoming K-means Limitations

Original Points K-means Clusters
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Overcoming K-means Limitations

Original Points K-means Clusters


