Data Mining

Lecture 15:

Center-based Clustering

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

1: Select K points as the initial centroids.
2: repeat
3: Form K clusters by assigning all points to the closest centroid.
4: Recompute the centroid of each cluster.
5: until The centroids don't change

K-means Clustering - Details

- Initial centroids are often chosen randomly.
- Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
- Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is $\mathrm{O}(\mathrm{n} * \mathrm{~K} * \mid$ *d)
- $\quad \mathrm{n}=$ number of points, $\mathrm{K}=$ number of clusters,

I = number of iterations, $d=$ number of attributes

Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
- For each point, the error is the distance to the nearest cluster
- To get SSE, we square these errors and sum them.

$$
S S E=\sum_{i=1}^{K} \sum_{x \in C_{i}} \sum_{j=1}^{n}\left(m_{j}^{i}-x_{j}\right)^{2}
$$

- x : a data point in cluster C_{i}, x_{j} is the jth attribute of x, and $\mathrm{m}_{\mathrm{j}}^{\mathrm{j}}$ is the jth attribute of the representative point for cluster C_{i}
- can show that m_{j} corresponds to the center of the cluster
- Given two clusters, we can choose the one with the smallest error
- One easy way to reduce SSE is to increase K, the number of clusters
- A good clustering with smaller K can have a lower SSE than a poor clustering with higher K

Two different K-means Clusterings

I mportance of Choosing I nitial Centroids

I mportance of Choosing I nitial Centroids

I mportance of Choosing I nitial Centroids ...

I mportance of Choosing I nitial Centroids

Iteration 3

Iteration 4

Iteration 5

Problems with Selecting I nitial Points

- If there are K 'real' clusters then the chance of selecting one centroid from each cluster is small.
- Chance is relatively small when K is large
- If clusters are the same size, n, then

$$
P=\frac{\text { number of ways to select one centroid from each cluster }}{\text { number of ways to select } K \text { centroids }}=\frac{K!n^{K}}{(K n)^{K}}=\frac{K!}{K^{K}}
$$

- For example, if $K=10$, then probability $=10!/ 10^{10}=0.00036$
- Sometimes the initial centroids will readjust themselves in 'right' way, and sometimes they don't
- Consider an example of five pairs of clusters

10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters

10 Clusters Example

Iteration 1

Iteration 2

Starting with two initial centroids in one cluster of each pair of clusters

10 Clusters Example

Iteration 4

Starting with some pairs of clusters having three initial centroids, while other have only one.

10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.

Solutions to I nitial Centroids Problem

- Multiple runs
- Helps, but probability is not on your side
- Sample and use hierarchical clustering to determine initial centroids
- Select more than k initial centroids and then select among these initial centroids
- Select most widely separated
- Postprocessing
- Bisecting K-means
- Not as susceptible to initialization issues

Updating Centers I ncrementally

- In the basic K-means algorithm, centroids are updated after all points are assigned to a centroid
- An alternative is to update the centroids after each assignment (incremental approach)
- Each assignment updates zero or two centroids
- More expensive
- Introduces an order dependency
- Never get an empty cluster
- Can use "weights" to change the impact

Pre-processing and Post-processing

- Pre-processing
- Normalize the data
- Eliminate outliers
- Post-processing
- Eliminate small clusters that may represent outliers
- Split 'loose' clusters, i.e., clusters with relatively high SSE
- Merge clusters that are 'close' and that have relatively low SSE
- Can use these steps during the clustering process
- ISODATA

Limitations of K-means

- K-means has problems when clusters are of differing
- Sizes
- Densities
- Non-globular shapes
- K-means has problems when the data contains outliers.

Limitations of K-means: Differing Sizes

Original Points
K-means (3 Clusters)

Limitations of K-means: Differing Density

K-means (3 Clusters)
Original Points

Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)

Overcoming K-means Limitations

Original Points
K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.

Overcoming K-means Limitations

Original Points
K-means Clusters

Overcoming K-means Limitations

Original Points

K-means Clusters

