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Data Mining

Lecture 14:

Cluster Analysis
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What is Cluster Analysis?

Finding groups of objects such that the objects in a group 
will be similar (or related) to one another and different 
from (or unrelated to) the objects in other groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized
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Applications of Cluster Analysis

Understanding
– Group related documents 

for browsing, group genes 
and proteins that have 
similar functionality, or 
group stocks with similar 
price fluctuations

Summarization
– Reduce the size of large 

data sets

 Discovered Clusters Industry Group 

1 Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, 
Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, 

DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, 
Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, 

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, 
Sun-DOWN 

 
 

Technology1-DOWN 

2 Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, 
ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, 

Computer-Assoc-DOWN,Circuit-City-DOWN, 
Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, 

Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN 

 
 

Technology2-DOWN 

3 Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, 
MBNA-Corp-DOWN,Morgan-Stanley-DOWN 

 
Financial-DOWN 

4 Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, 
Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, 

Schlumberger-UP 

 
Oil-UP 

 

 

Clustering precipitation 
in Australia
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Notion of a Cluster can be Ambiguous

How many clusters? Six Clusters

Two Clusters Four Clusters
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Types of Clusterings

A clustering is a set of clusters

Important distinction between hierarchical and 
partitional sets of clusters 

Partitional Clustering
– A division data objects into non-overlapping subsets (clusters) 

such that each data object is in exactly one subset

Hierarchical clustering
– A set of nested clusters organized as a hierarchical tree 
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Partitional Clustering

A Partitional  ClusteringOriginal Points
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Hierarchical Clustering

p4p1 p2 p3

p4
p1 

p3

p2 

Traditional Hierarchical Clustering Traditional Dendrogram

p4p1 p2 p3

p4
p1

p3

p2

Non-traditional Hierarchical Clustering Non-traditional Dendrogram
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Other Distinctions Between Sets of Clusters

Exclusive versus non-exclusive
– In non-exclusive clusterings, points may belong to multiple 

clusters.
– Can represent multiple classes or ‘border’ points

Fuzzy versus non-fuzzy
– In fuzzy clustering, a point belongs to every cluster with some 

weight between 0 and 1
– Weights must sum to 1
– Probabilistic clustering has similar characteristics

Partial versus complete
– In some cases, we only want to cluster some of the data
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Elements of A Clustering Problem

Input: 
– Almost any object can be clustered:

Continuous-valued data points in multi-dimensional space
People, with heterogeneous attributes (salary, age, sex, level of education, 

marital status, etc)
Time series
Sequences (Web click-streams, gene, events)
Graphs (XML structures, molecules, etc)
Patterns and Models (association rules, classification models, clusters of 

clusters, etc)
– Similarity or dissimilarity measure 

Output:
– A set of clusters:

well-separated clusters
center-based clusters
contiguous clusters
density-based clusters
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Types of Clusters: Well-Separated

Well-Separated Clusters: 
– A cluster is a set of points such that any point in a cluster is

closer (or more similar) to every other point in the cluster than 
to any point not in the cluster. 

3 well-separated clusters
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Types of Clusters: Center-Based

Center-based
– A cluster is a set of objects such that an object in a cluster is 

closer (more similar) to the “center” of a cluster, than to the 
center of any other cluster  

– The center of a cluster is often a centroid, the average of all 
the points in the cluster, or a medoid, the most “representative”
point of a cluster 

4 center-based clusters
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Types of Clusters: Contiguity-Based

Contiguous Cluster (Nearest neighbor or 
Transitive)
– A cluster is a set of points such that a point in a cluster is 

closer (or more similar) to one or more other points in the 
cluster than to any point not in the cluster.

8 contiguous clusters
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Types of Clusters: Density-Based

Density-based
– A cluster is a dense region of points, which is separated by 

low-density regions, from other regions of high density. 
– Used when the clusters are irregular or intertwined, and when 

noise and outliers are present. 

6 density-based clusters
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Similarity and Dissimilarity

Similarity
– Numerical measure of how alike two data objects are.
– Is higher when objects are more alike.
– Often falls in the range [0,1]

Dissimilarity
– Numerical measure of how different are two data 

objects
– Lower when objects are more alike
– Minimum dissimilarity is often 0
– Upper limit varies

Proximity refers to a similarity or dissimilarity



Similarity/Dissimilarity for Simple Attributes
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p and q are the attribute values for two data objects.
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Euclidean Distance

Euclidean Distance

Where n is the number of dimensions (attributes) and pk and qk
are, respectively, the kth attributes (components) or data 
objects p and q.

Standardization is necessary, if scales differ.
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Euclidean Distance

0

1

2

3

0 1 2 3 4 5 6

p1

p2

p3 p4

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0

Distance Matrix
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Minkowski Distance

Minkowski Distance is a generalization of Euclidean 
Distance

Where r is a parameter, n is the number of dimensions 
(attributes) and pk and qk are, respectively, the kth attributes 
(components) or data objects p and q.
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Minkowski Distance: Examples

r = 1.  City block (Manhattan, taxicab, L1 norm) distance. 
– A common example of this is the Hamming distance, which is just the 

number of bits that are different between two binary vectors

r = 2.  Euclidean distance

r → ∞.  “supremum” (Lmax norm, L∞ norm) distance. 
– This is the maximum difference between any component of the vectors

Do not confuse r with n, i.e., all these distances are 
defined for all numbers of dimensions.
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Minkowski Distance

L1 p1 p2 p3 p4
p1 0 4 4 6
p2 4 0 2 4
p3 4 2 0 2
p4 6 4 2 0

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

L2 p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0

L∞ p1 p2 p3 p4
p1 0 2 3 5
p2 2 0 1 3
p3 3 1 0 2
p4 5 3 2 0

Distance Matrix
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Mahalanobis Distance
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Σ is the covariance matrix of 
the input data X
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For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.
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Mahalanobis Distance

Covariance Matrix:

⎥
⎦

⎤
⎢
⎣

⎡
=Σ

3.02.0
2.03.0

B

A

C

A: (0.5, 0.5)

B: (0, 1)

C: (1.5, 1.5)

Mahal(A,B) = 5

Mahal(A,C) = 4 
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Common Properties of a Distance

Distances, such as the Euclidean distance, 
have some well known properties.

1. d(p, q) ≥ 0 for all p and q and d(p, q) = 0 only if 
p = q. (Positive definiteness)

2. d(p, q) = d(q, p) for all p and q. (Symmetry)
3. d(p, r) ≤ d(p, q) + d(q, r) for all points p, q, and r.  

(Triangle Inequality)

where d(p, q) is the distance (dissimilarity) between 
points (data objects), p and q.

A distance that satisfies these properties is a 
metric
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Common Properties of a Similarity

Similarities, also have some well known 
properties.

1. s(p, q) = 1 (or maximum similarity) only if p = q. 

2. s(p, q) = s(q, p) for all p and q. (Symmetry)

where s(p, q) is the similarity between points (data 
objects), p and q.



26

Similarity Between Binary Vectors

Common situation is that objects, p and q, have only 
binary attributes

Compute similarities using the following quantities
M01 = the number of attributes where p was 0 and q was 1
M10 = the number of attributes where p was 1 and q was 0
M00 = the number of attributes where p was 0 and q was 0
M11 = the number of attributes where p was 1 and q was 1

Simple Matching and Jaccard Coefficients 
SMC =  number of matches / number of attributes 

=  (M11 + M00) / (M01 + M10 + M11 + M00)

J = number of 11 matches / number of not-both-zero attributes values
= (M11) / (M01 + M10 + M11) 
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SMC versus Jaccard: Example

p =  1 0 0 0 0 0 0 0 0 0    
q =  0 0 0 0 0 0 1 0 0 1

M01 = 2   (the number of attributes where p was 0 and q was 1)
M10 = 1   (the number of attributes where p was 1 and q was 0)
M00 = 7   (the number of attributes where p was 0 and q was 0)
M11 = 0   (the number of attributes where p was 1 and q was 1)

SMC = (M11 + M00)/(M01 + M10 + M11 + M00) = (0+7) / (2+1+0+7) = 0.7

J = (M11) / (M01 + M10 + M11) = 0 / (2 + 1 + 0) = 0
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Cosine Similarity

If d1 and d2 are two document vectors, then
cos( d1, d2 ) =  (d1 • d2) / ||d1|| ||d2|| , 

where • indicates vector dot product and || d || is  the   length of vector d.

Example: 

d1 =  3 2 0 5 0 0 0 2 0 0 
d2 =  1 0 0 0 0 0 0 1 0 2

d1 • d2=  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5

||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481
||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.245

cos( d1, d2 ) = .3150
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Extended Jaccard Coefficient (Tanimoto)

Variation of Jaccard for continuous or count 
attributes
– Reduces to Jaccard for binary attributes


