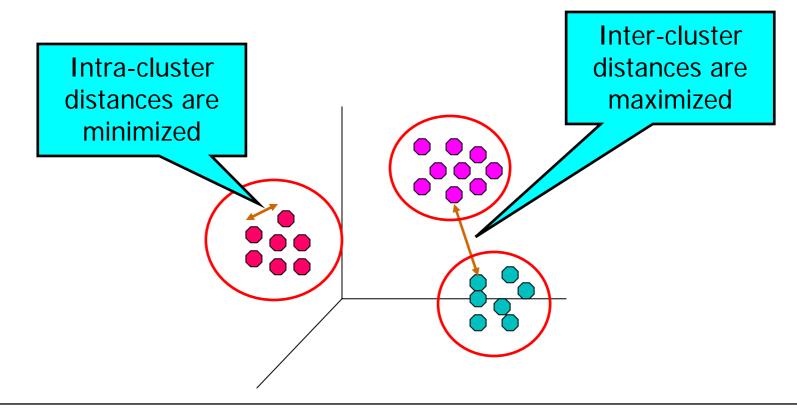
Data Mining

Lecture 14:

Cluster Analysis

What is Cluster Analysis?

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups



Applications of Cluster Analysis

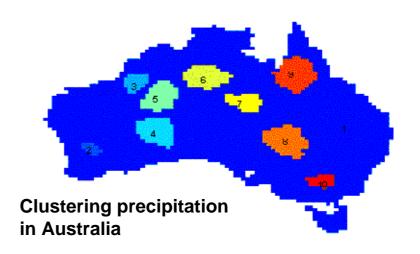
• Understanding

 Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

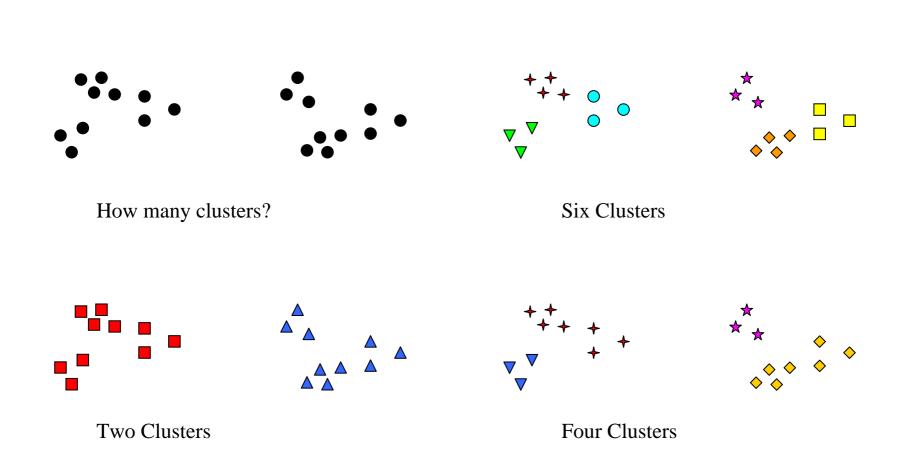
	Discovered Clusters	Industry Group
1	Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN	Technology1-DOWN
2	Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, Computer-Assoc-DOWN,Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, Schlumberger-UP	Oil-UP

Summarization

 Reduce the size of large data sets



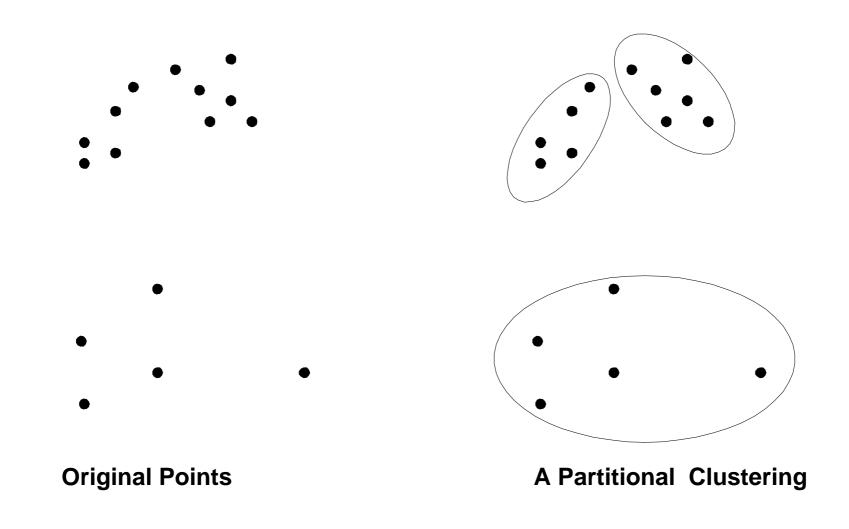
Notion of a Cluster can be Ambiguous



Types of Clusterings

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partitional Clustering



7

Hierarchical Clustering



Non-traditional Hierarchical Clustering

Other Distinctions Between Sets of Clusters

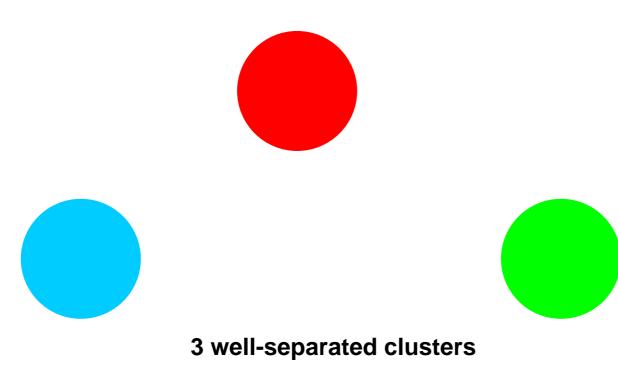
- Exclusive versus non-exclusive
 - In non-exclusive clusterings, points may belong to multiple clusters.
 - Can represent multiple classes or 'border' points
- Fuzzy versus non-fuzzy
 - In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
 - Weights must sum to 1
 - Probabilistic clustering has similar characteristics
- Partial versus complete
 - In some cases, we only want to cluster some of the data

Elements of A Clustering Problem

- Input:
 - Almost any object can be clustered:
 - Continuous-valued data points in multi-dimensional space
 - People, with heterogeneous attributes (salary, age, sex, level of education, marital status, etc)
 - Time series
 - Sequences (Web click-streams, gene, events)
 - Graphs (XML structures, molecules, etc)
 - Patterns and Models (association rules, classification models, clusters of clusters, etc)
 - Similarity or dissimilarity measure
- Output:
 - A set of clusters:
 - well-separated clusters
 - center-based clusters
 - contiguous clusters
 - density-based clusters

Types of Clusters: Well-Separated

- Well-Separated Clusters:
 - A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.



Types of Clusters: Center-Based

Center-based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster



4 center-based clusters

Types of Clusters: Contiguity-Based

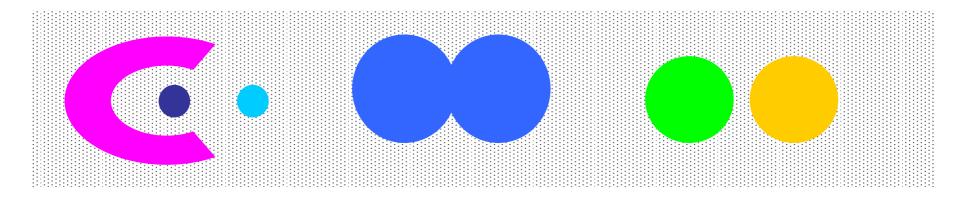
- Contiguous Cluster (Nearest neighbor or Transitive)
 - A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.

8 contiguous clusters

Types of Clusters: Density-Based

Density-based

- A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.



6 density-based clusters

Similarity and Dissimilarity

- Similarity
 - Numerical measure of how alike two data objects are.
 - Is higher when objects are more alike.
 - Often falls in the range [0,1]
- Dissimilarity
 - Numerical measure of how different are two data objects
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Similarity/Dissimilarity for Simple Attributes

p and *q* are the attribute values for two data objects.

Attribute	Dissimilarity	Similarity
Туре		
Nominal	$igg \ d = \left\{ egin{array}{cc} 0 & ext{if} \ p = q \ 1 & ext{if} \ p eq q \end{array} ight.$	$egin{array}{cccc} s = \left\{egin{array}{cccc} 1 & ext{if} \ p = q \ 0 & ext{if} \ p eq q \end{array} ight.$
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Interval or Ratio	d = p-q	$s = -d, s = \frac{1}{1+d} \text{ or}$ $s = 1 - \frac{d - min_d}{max_d - min_d}$
		$s = 1 - rac{d-min_d}{max_d-min_d}$

Table 5.1. Similarity and dissimilarity for simple attributes

Euclidean Distance

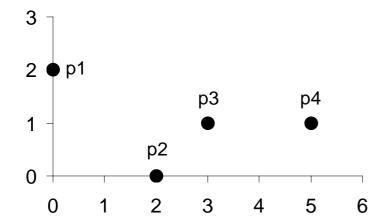
• Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Where *n* is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) or data objects *p* and *q*.

• Standardization is necessary, if scales differ.

Euclidean Distance



point	X	У
p1	0	2
p2	2	0
p3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

 Minkowski Distance is a generalization of Euclidean Distance

$$dist = \left(\sum_{k=1}^{n} p_k - q_k \right|^{r} \right)^{\frac{1}{r}}$$

Where *r* is a parameter, *n* is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) or data objects *p* and *q*.

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L₁ norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \rightarrow \infty$. "supremum" (L_{max} norm, L_∞ norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse *r* with *n*, i.e., all these distances are defined for all numbers of dimensions.

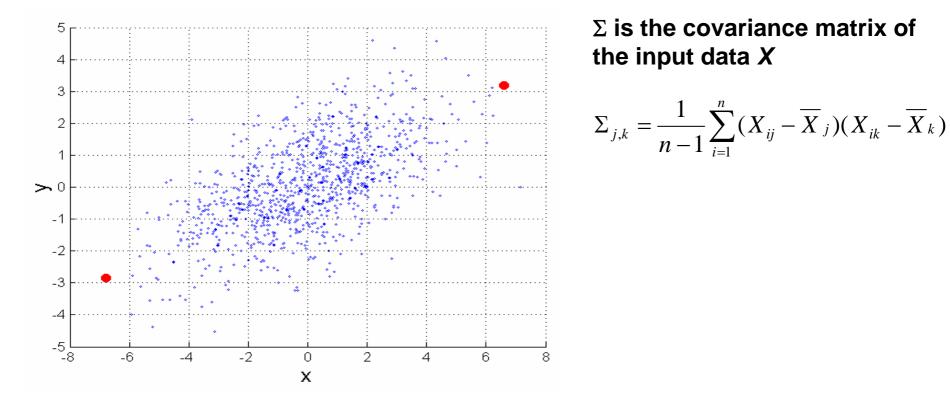
Minkowski Distance

L1	p1	p2	p3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0
1.2	1		2	- m4
L2	p1	p2	p3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0
L_{∞}	p1	p2	p3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

point	X	У
p1	0	2
p2	2	0
p3	3	1
p4	5	1

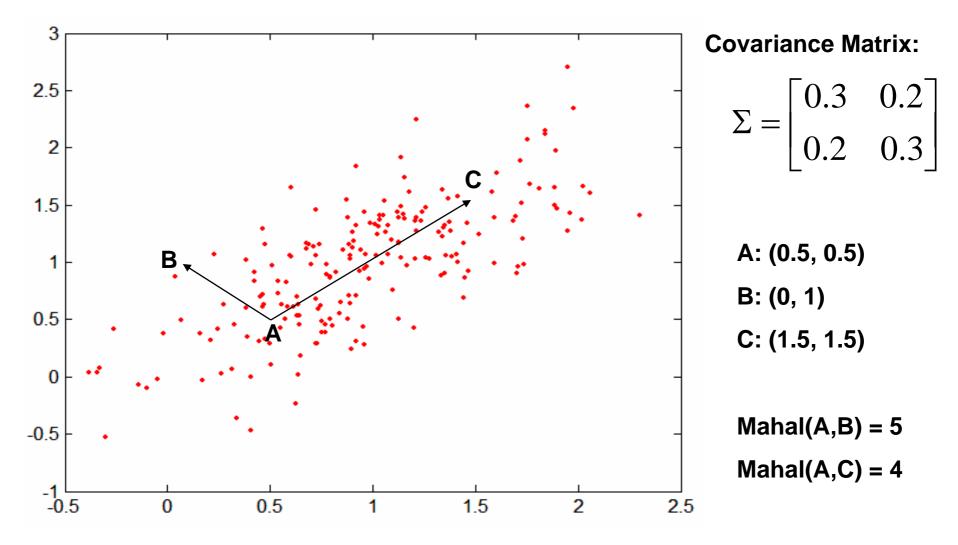
Distance Matrix

mahalanobi
$$s(p,q) = (p-q) \sum^{-1} (p-q)^T$$



For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

Mahalanobis Distance



Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.
 - 1. $d(p, q) \ge 0$ for all p and q and d(p, q) = 0 only if p = q. (Positive definiteness)
 - 2. d(p, q) = d(q, p) for all p and q. (Symmetry)
 - 3. $d(p, r) \le d(p, q) + d(q, r)$ for all points p, q, and r. (Triangle Inequality)

where d(p, q) is the distance (dissimilarity) between points (data objects), p and q.

 A distance that satisfies these properties is a metric

Common Properties of a Similarity

- Similarities, also have some well known properties.
 - 1. s(p, q) = 1 (or maximum similarity) only if p = q.
 - 2. s(p, q) = s(q, p) for all p and q. (Symmetry)

where s(p, q) is the similarity between points (data objects), p and q.

Similarity Between Binary Vectors

- Common situation is that objects, *p* and *q*, have only binary attributes
- Compute similarities using the following quantities
 M₀₁ = the number of attributes where p was 0 and q was 1
 M₁₀ = the number of attributes where p was 1 and q was 0
 M₀₀ = the number of attributes where p was 0 and q was 0
 M₁₁ = the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard Coefficients SMC = number of matches / number of attributes

 $= (M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$

J = number of 11 matches / number of not-both-zero attributes values = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

SMC versus Jaccard: Example

 $M_{01} = 2$ (the number of attributes where p was 0 and q was 1) $M_{10} = 1$ (the number of attributes where p was 1 and q was 0) $M_{00} = 7$ (the number of attributes where p was 0 and q was 0) $M_{11} = 0$ (the number of attributes where p was 1 and q was 1)

 $SMC = (M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7) / (2+1+0+7) = 0.7$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

Cosine Similarity

If d₁ and d₂ are two document vectors, then
 cos(d₁, d₂) = (d₁ • d₂) / ||d₁|| ||d₂||,
 where • indicates vector dot product and || d || is the length of vector d.

• Example:

 $d_1 = 3205000200$ $d_2 = 100000102$

 $\begin{aligned} d_1 \bullet d_2 &= 3^*1 + 2^*0 + 0^*0 + 5^*0 + 0^*0 + 0^*0 + 0^*0 + 2^*1 + 0^*0 + 0^*2 = 5 \\ ||d_1|| &= (3^*3 + 2^*2 + 0^*0 + 5^*5 + 0^*0 + 0^*0 + 0^*0 + 2^*2 + 0^*0 + 0^*0)^{0.5} = (42)^{0.5} = 6.481 \\ ||d_2|| &= (1^*1 + 0^*0 + 0^*0 + 0^*0 + 0^*0 + 0^*0 + 1^*1 + 0^*0 + 2^*2)^{0.5} = (6)^{0.5} = 2.245 \end{aligned}$

 $\cos(d_1, d_2) = .3150$

Extended Jaccard Coefficient (Tanimoto)

- Variation of Jaccard for continuous or count attributes
 - Reduces to Jaccard for binary attributes

$$T(p,q) = \frac{p \bullet q}{\|p\|^2 + \|q\|^2 - p \bullet q},$$