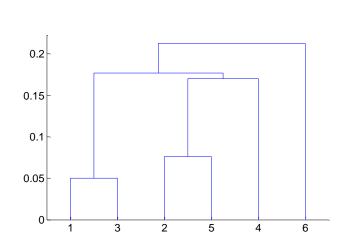
Data Mining Cluster Analysis: Basic Concepts and Algorithms

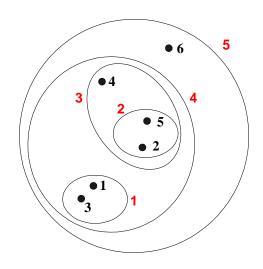
Introduction to Data Mining, 2nd Edition by

Tan, Steinbach, Karpatne, Kumar

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits





Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

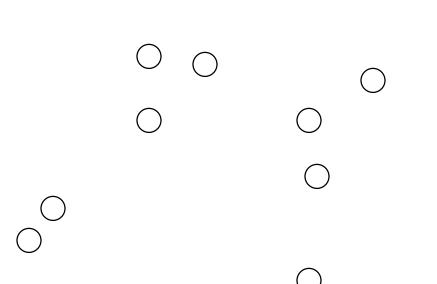
- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains an individual point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

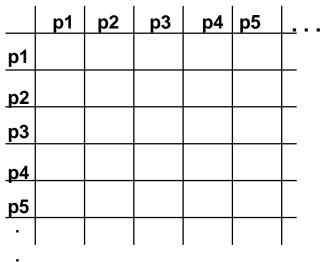
Agglomerative Clustering Algorithm

- Most popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - **6. Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

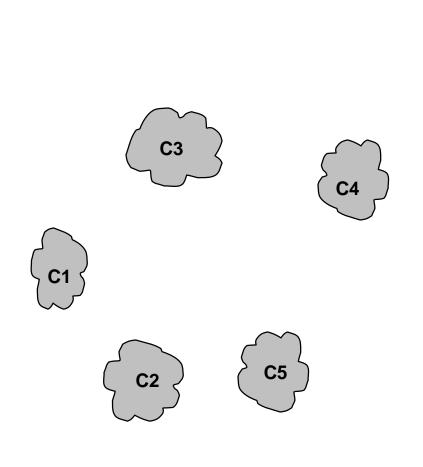
Start with clusters of individual points and a proximity matrix





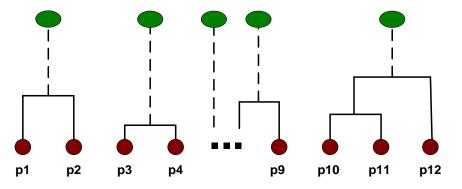
Intermediate Situation

After some merging steps, we have some clusters



	C 1	C2	СЗ	C4	C 5
C 1					
C2					
C 3					
<u>C4</u>					
C 5					

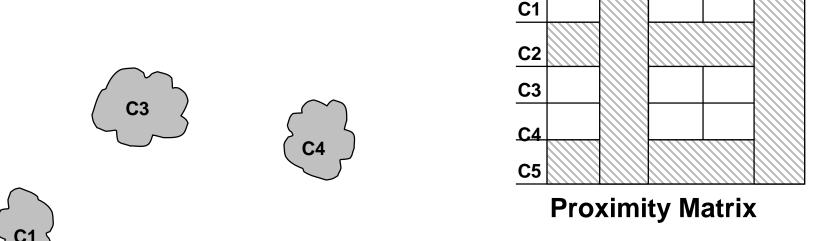
Proximity Matrix

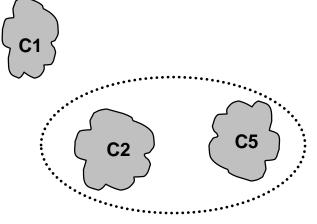


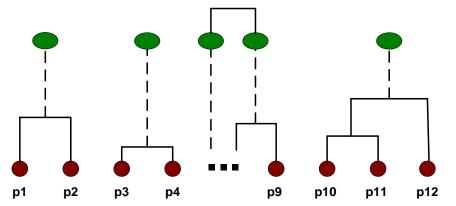
Intermediate Situation

We want to merge the two closest clusters (C2 and C5) and

update the proximity matrix.







C2

C3

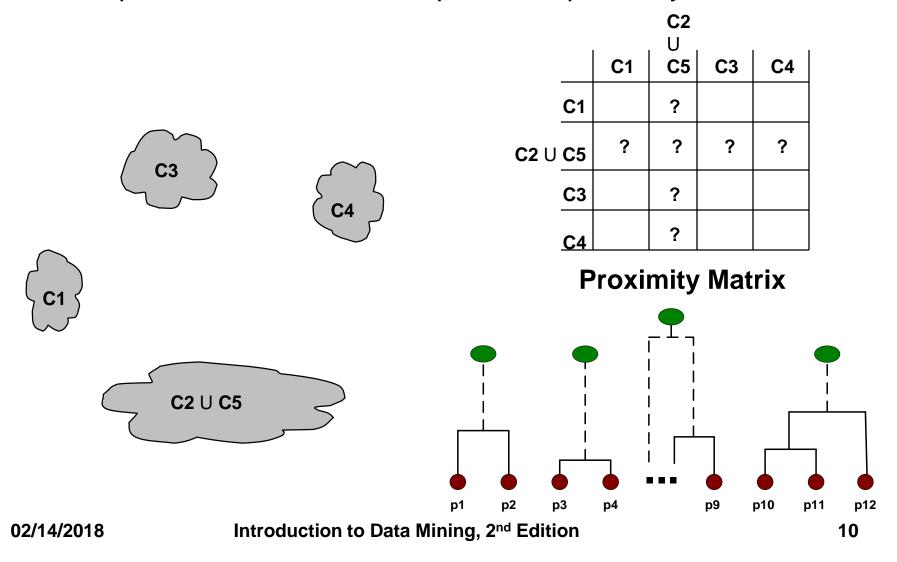
C1

C5

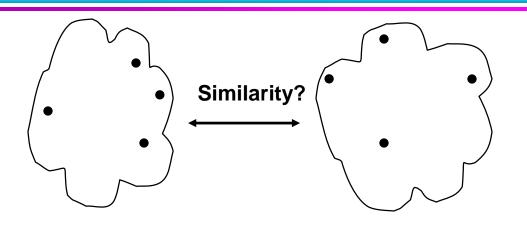
C4

After Merging

• The question is "How do we update the proximity matrix?"

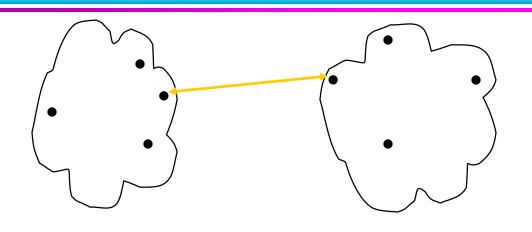


How to Define Inter-Cluster Distance



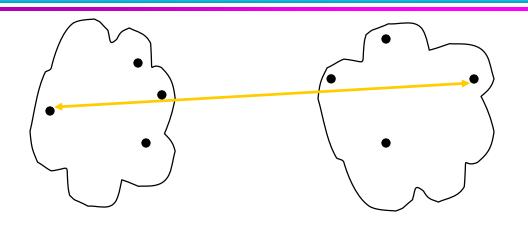
	р1	p2	рЗ	p4	р5	<u> </u>
p1						
p2						
p2 p3						
р4						
p5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error



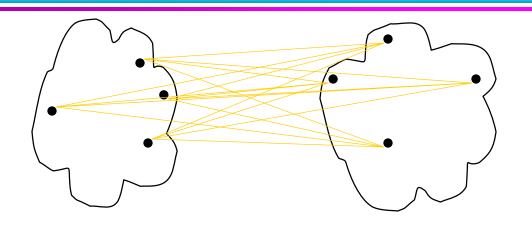
	р1	p2	рЗ	p4	p5	<u> </u>
р1						
p2						
рЗ						
p4						
р5						_
_						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error



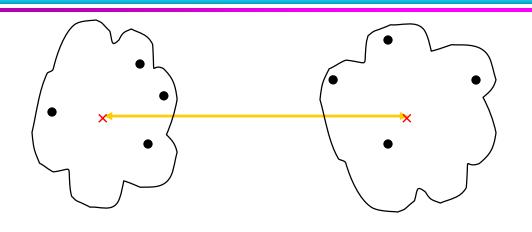
	p1	p2	рЗ	p4	p 5	<u> </u>
p 1						
p2						
рЗ						
p 4						
р5						_

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error



	p1	p2	рЗ	p4	р5	<u> </u>
p1						
p2						
рЗ						_
p4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error



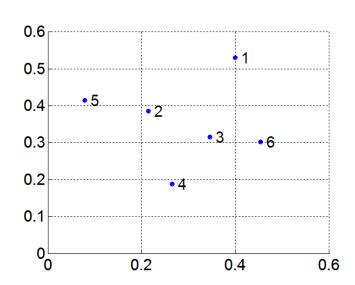
	p1	p2	рЗ	p4	p 5	<u> </u>
p1						
p2						
р3						
p 4						
p5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

MIN or Single Link

- Proximity of two clusters is based on the two closest points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph

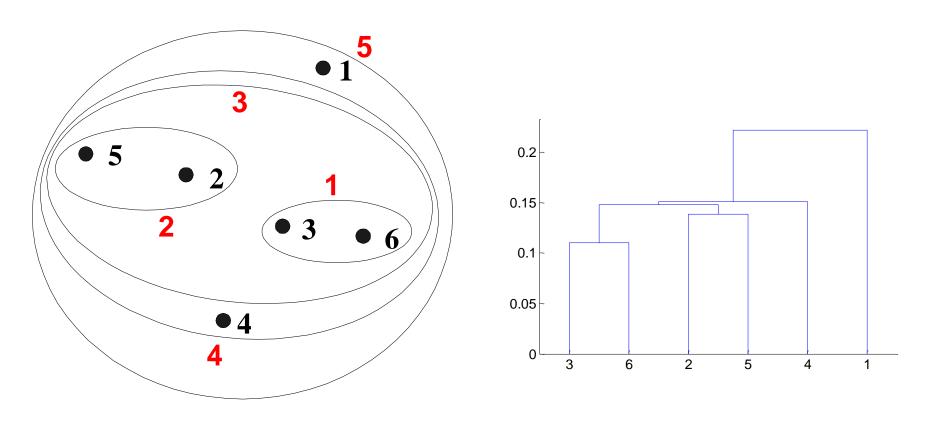
• Example:



Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

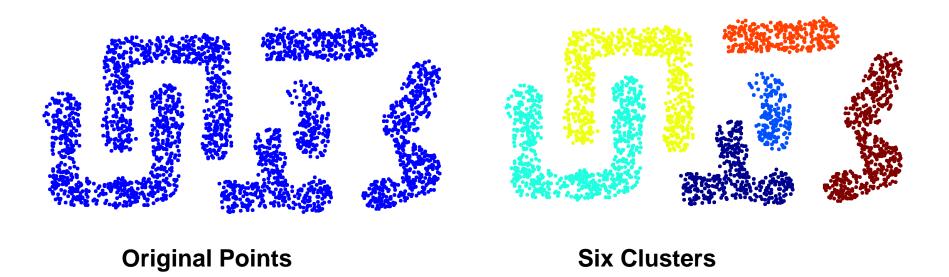
Hierarchical Clustering: MIN



Nested Clusters

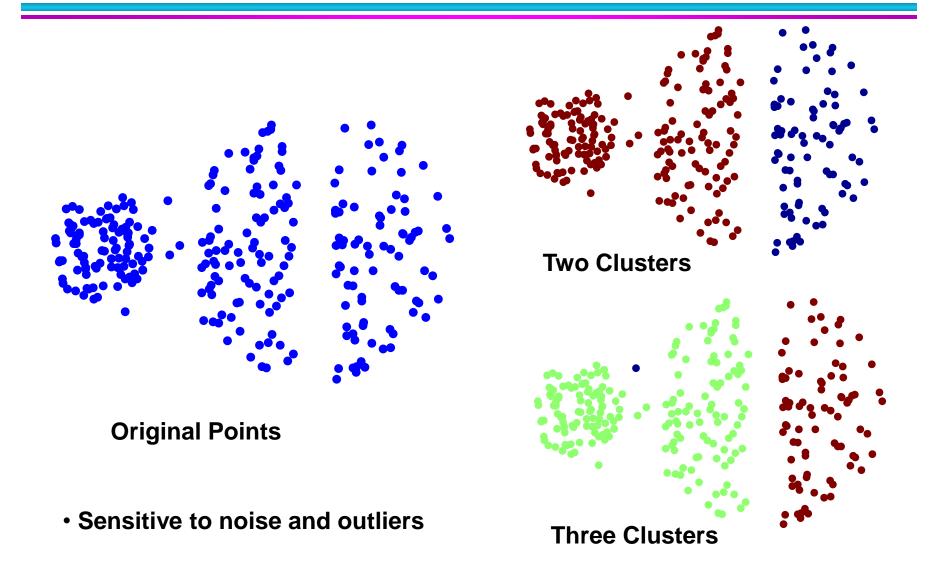
Dendrogram

Strength of MIN



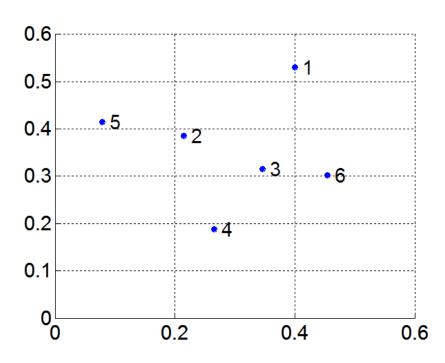
Can handle non-elliptical shapes

Limitations of MIN



MAX or Complete Linkage

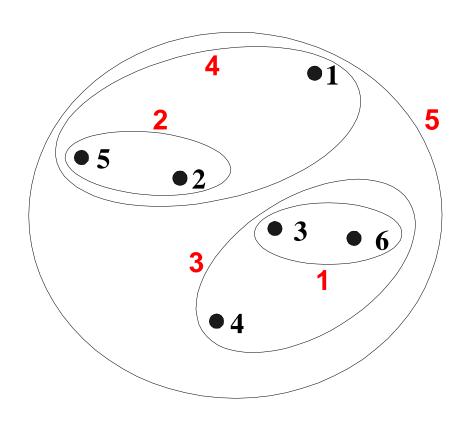
- Proximity of two clusters is based on the two most distant points in the different clusters
 - Determined by all pairs of points in the two clusters

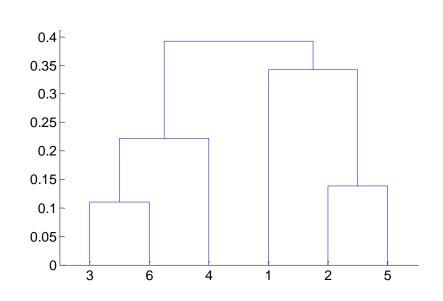


Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: MAX

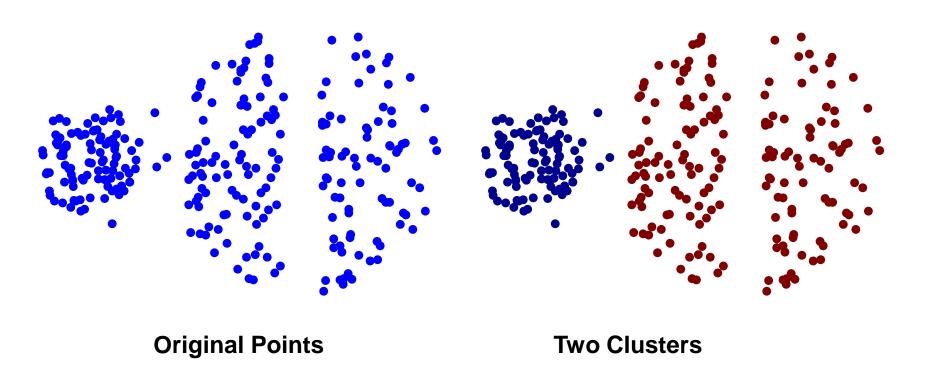




Nested Clusters

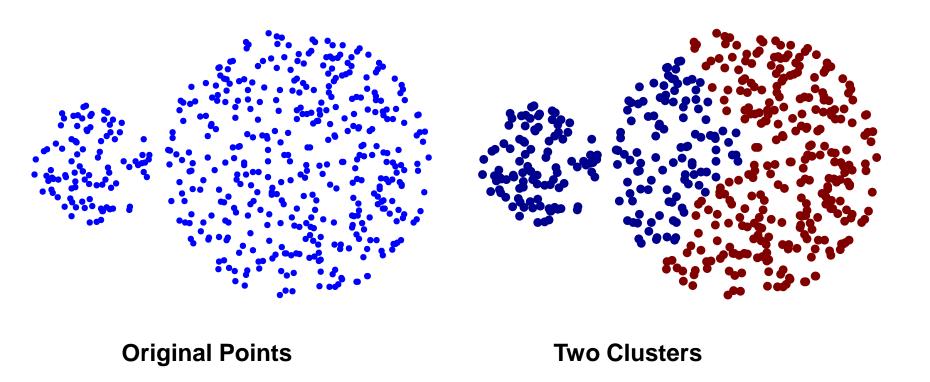
Dendrogram

Strength of MAX



Less susceptible to noise and outliers

Limitations of MAX



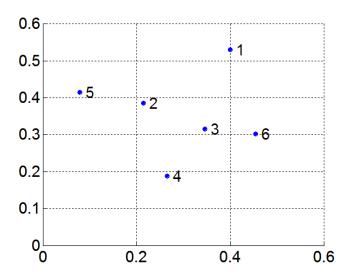
- Tends to break large clusters
- Biased towards globular clusters

Group Average

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$\begin{aligned} & \sum_{p_i \in \text{Cluster}_i} \text{proximity}(p_i, p_j) \\ & \text{proximity}(\text{Cluster}_i, \text{Cluster}_j) = \frac{\sum_{p_i \in \text{Cluster}_i} p_j \in \text{Cluster}_i}{|\text{Cluster}_i| \times |\text{Cluster}_i|} \end{aligned}$$

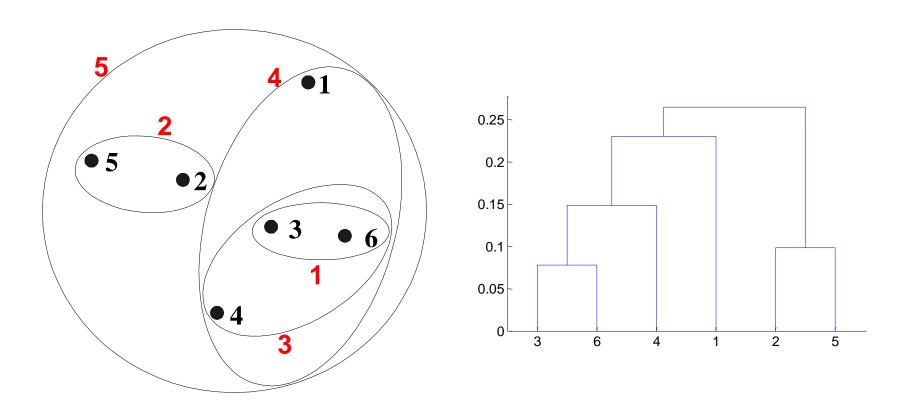
 Need to use average connectivity for scalability since total proximity favors large clusters



Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: Group Average



Nested Clusters

Dendrogram

Hierarchical Clustering: Group Average

 Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters