Data Mining

Lecture 4.
Decision Tree & Model Evaluation




Practical Issues of Classification

e Underfitting and Overfitting
e Missing Values

e Costs of Classification




Underfitting and Overfitting (Example)
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500 circular and 500
triangular data points.

Circular points:

0.5 <sgrt(x,?+x,%) <1

Triangular points:
sqrt(x,2+x,%) > 0.5 or

sqre(x,%+x,%) <1




Underfitting and Overfitting
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Underfitting: when model is too simple, both training and test errors are large
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Overfitting due to Noise
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Decision boundary is distorted by noise point




Overfitting due to Insufficient Examples
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Lack of data points in the lower half of the diagram makes it difficult
to predict correctly the class labels of that region

- Insufficient number of training records in the region causes the
decision tree to predict the test examples using other training
records that are irrelevant to the classification task




Decision Boundary
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* Border line between two neighboring regions of different classes is
known as decision boundary

» Decision boundary is parallel to axes because test condition involves
a single attribute at-a-time
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ODblique Decision Trees
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» Test condition may involve multiple attributes

* More expressive representation

* Finding optimal test condition is computationally expensive

Class = +

Class = @
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Model Evaluation

e Metrics for Performance Evaluation
— How to evaluate the performance of a model?

e Methods for Performance Evaluation
— How to obtain reliable estimates?

e Methods for Model Comparison

— How to compare the relative performance
among competing models?
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Metrics for Performance Evaluation

e Focus on the predictive capability of a model

— Rather than how fast it takes to classify or
build models, scalability, etc.

e Confusion Matrix:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes | Class=No

Class=Yes a

b

Class=No C

d

a: TP (true positive)
b: FN (false negative)
c: FP (false positive)

d: TN (true negative)
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Metrics for Performance Evaluation...

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes

Class=No

Class=Yes

a
(TP)

b
(FN)

Class=No

C

d

(FP) (TN)

e Most widely-used metric:

a+d TP+TN

Accuracy = =
a+b+c+d TP+TN+FP+FN
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Limitation of Accuracy

e Consider a 2-class problem
— Number of Class 0 examples = 9990
— Number of Class 1 examples = 10

e |If model predicts everything to be class 0,
accuracy 1s 9990/10000 = 99.9 %

— Accuracy Is misleading because model does
not detect any class 1 example
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Cost Matrix

PREDICTED CLASS

ACTUAL
CLASS

C(i|)) Class=Yes | Class=No
Class=Yes | C(Yes|Yes) | C(No|Yes)
Class=No C(Yes|No) | C(No|No)

C(i[}): Cost of misclassifying class | example as class |
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Computing Cost of Classification

Cost | PREDICTED CLASS
Matrix
C@lp | + -
ACTUAL
+ -
CLASS 1 | 100
- 1 0
Model | PREDICTED CLASS Model | PREDICTED CLASS
Ml MZ
+ - + -
ACTUAL ACTUAL
+ +
Ol ASS 150 | 40 1 ASS 250 | 45
- 60 | 250 - 5 | 200
Accuracy = 80% Accuracy = 90%

Cost = 3910 Cost = 4255
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Cost vs Accuracy

Count PREDICTED CLASS
Class=Yes | Class=No
Class=Yes a b
ACTUAL
CLASS | Class=No C d
Cost PREDICTED CLASS
Class=Yes | Class=No
Class=Yes P g
ACTUAL
CLASS | Class=No q D

Accuracy is proportional to cost if
1. C(Yes|No)=C(No|Yes) =q
2. C(Yes|Yes)=C(No|No) = p

N=a+b+c+d

Accuracy = (a + d)/N

Cost=p(a+d)+qg(b+c)
=p@a+d)+q(N-a-d)
=qN-(q-p)(a+d)
=N [g — (g-p) x Accuracy]
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Cost-Sensitive Measures

Precision (p) = &
a+c
Recall (r) = — 2
a+b
2rp  2a

F - measure (F) =

r+p 2a+b+c

e Precision is biased towards C(Yes|Yes) & C(Yes|No)

e Recall is biased towards C(Yes|Yes) & C(No|Yes)

e F-measure is biased towards all except C(No|No)
wa+w.d

wa+wb+wc+wd

Weighted Accuracy =
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