Chapter 4

Greedy Approach
ailay > 9,

The idea

Wigas oo bl S (SO eeslo O

4 azg5 g Bl op e Wb bl a0
oaisl o b L3 slacbl

Sedsco ool (g jlwaigs Jlus J> gl delO

c\.:La.:)} rw)sﬂ‘ Ja.ws.: ol ‘\:’.‘)‘ J.> o|) MD
PRGNV

e - HO9PS®

. N Amount owed: 36 cents
S0 0% Us

1.Grab 25 @
2. Grab first 10 @ »

3. Reject second 10 o | @ ﬁ
5.Grab 1 @ @ @

Figure 4.1 e A greedy algorithm for giving change,

4. Reject 5

U.S. coins (penny(1), nickel(5), dime(10), quarter(25), half dollar(50))

Coins

Amount owed: 16 cents

Step Total Change

ohyy o5 A
Sly> ailay >

S oo |y digs

1. Grab 12-cent coin

2. Reject dime

3. Reject nickel

if we include a 12-
cent coin with the
US COinS, the 4. Grab four pennies
greedy algorithm
does not always
give an optimal
solution.

Greedy solution: 16=12+1+1+1+1
Optimal solution: 16=10+5+1

The algorithm

while (there are more coins and the instance is not solved){

grab the largest remaining coin;
// selection procedure

If (adding the coin makes the change exceed the amount owed)
reject the coin; // feasibility check

else
add the coin to the change;

If (the total value of the change equals the amount owed)
// solution check
the instance is solved;

Basic components in Greedy approach

o A selection procedure chooses the next item to
add to the set. The selection is performed
according to a greedy criterion that satisfies
some locally optimal consideration at the time.

o A feasibility check determines if the new set is
feasible by checking whether it is possible to
complete this set in such a way as to give a
solution to the instance.

0 A solution check determines whether the new
set constitutes a solution to the instance.

Minimum spanning trees

Definition
An undirected graph G consists of a finite set V' whose members are

called the vertices of G, together with a set E of pairs of vertices in V.
These pairs are called the edges of G. We denote G by

G =(V,E).

eSS (lbgs e 40 8L slp J> g, 90 O
(Kruskal) JiKul,s b9, ™

(Prim) v ohgy

(a) A connected, weighted, (b) If (v4,vs) were removed from this subgraph,
undirected graph G. the graph would remain connected.

s
ol b bl

(c) A spanning tree for G. (d) A minimum spanning tree for G.

Vo

Yy

Figure 4.3 ® A weighted graph and three subgraphs.

An tlustration (1)

Determine a minimum 1. Edges are sorted by weight.
spanning tree.

(vi,vp) 1
(va,v5) 2
(vy,v3) 3
(va,va) 3
(Va,Va) 4

(Va,v5) 5
(VE,V4) 6

An tllustration (2)

2. Disjoint set are created. 3. Edge (v4,v,) is selected.

O O O0—G
® o
® ™

10

An 1llustration (3)

4. Edge (v3,Vs) is selected. 5. Edge (v4,v3) is selected.

OO OO

11

An 1llustration (4)

6. Edge (v, v3) is selected. 7. Edge (v,v,) is selected.

0 O—0O
@

V3
2

&

Data types and operations

o Data types

= index /;

= set_pointer p, g;
o Operations

e initial(n) initializes n disjoint subsets, each of which contains exactly one
of the indices between 1 and n.

e p = find(i) makes p point to the set containing index <.

e merge(p, q) merges the two sets, to which p and ¢ point, into the set.

e equal(p, q) returns true if p and g both point to the same set.

13

Kruskal’s algorithm

F=g; // Initialize set of

// edges to empty.
create disjoint subsets of V, one for each

vertex and containing only that vertex;
sort the edges in E in nondecreasing order;

while (the instance is not solved){

select next edge; // selection procedure

if (the edge connects two vertices in

disjoint subsets){
merge the subsets; '

add rthe edge to F;

// feasibility check

}
if (all the subsets are merged)

// solution check
the instance is solved;

14

Kruskal’s algorithm

void kruskal (int n, int m, set_of_edges E, set_of_edges& F) {
index /, j;
set_pointer p, g;
edge ¢;
Sort the m edges in E by weight in nondecreasing order;
F=0,
initial (n); // Initialize n disjoint subsets.
while (number of edges in Fis less than n - 1){
e = edge with least weight not yet considered;
i, j = indices of vertices connected by e;
p = find(i);
q = find(j);
if (! equal(p, g))<
merge(p, q);
add e to F;

Worst-case time complexity

O Basic operation: a comparison instruction

o Input size: n, the number of vertices, and
m, the number of edges

0 Analysis:
= The time to sort the edges: W(m) € ©(mlgm)
= The time in the while loop: W(m) € 6(mlgm)
= The time to initialize n disjoint sets: T(n) € ©(n)
= Overall: W(m, n) € ©(mlgm)
= In the worst case every vertex can be

connected to every other vertex m=n(n-1)/2,
Therefore W(m,n) = o(n2/gn)

16

Proof

I Alemma 4.2 Let G=(V, E) bea connectéd, weighted, undirected graph; let
F be a promising subset of E; and let e be an edge of minimum weight in £ —F
such that F'U {e} has no simple cycles. Then F' U {e} is promising.

o Theorem 4.2: Kruskal’s algorithm always
produces a minimum spanning tree

17

Prim’s algorithm

F = @ // Initialize set of edges to empty.

Y ={vl} // Initialize set of vertices to
// contain only the first one.

while (the instance is not solved)<{
select a vertex in V - Y that is nearest to Y;
// selection procedure and feasibility check

add the vertex to Y;
add the edge to F;

if (Y == V)// solution check the instance is solved;

»

18

An example

Determine a minimum
spanning tree.

1. Vertex v, is selected first.

19

An example

2. Vertex v, is selected because
it is nearest to {v4}.

3. Vertex v; is selected because
it is nearest to {v4, v»}.

.

1

Vo

20

An example

4. Vertex v, is selected because
it is nearest to {vy, Vo, V3}.

5. Vertex v, is selected.

/)

V2
6
&

21

Adjacency matrix

(weight on edge if there is an edge between v; and v;
Wil [j] = § o if there is no edge between v; and v;
0 if 1 = 7.
2 4 5
1]o0 o oo

4| 6 4 0 5

Figure 4.5 @ The array representation W of the graph in Figure 4.3(a).

22

Prim’s algorithm

nearest [i] = index of the vertex in Y nearest to v;

distance [i] = weight on edge between v; and the vertex indexed
by nearest|[i]

Algorithm 4.1: Prim's Algorithm

void prim (int n, const number W[][], set_of_edges& F)
{
index /, vnear;
number min;
edge e;
index nearest[2..n];
number distance [2..n];
F=0,
for (i=2;i<=n; i++){
nearest [i] = 1; // For all vertices, initialize v1
distance [i] = W[1][i]; // to be the nearest vertex in

23

Prim’s algorithm (cont’d)

repeat (n - 1 times){ // Add all n - 1 vertices to Y.
min = oco;
for (i = 2; i <= n; i++) // Check each vertex for being nearest to Y.
if (0 < distance[i] < min){
min = distanceli];

vnear = i;
b
e = edge connecting vertices indexed by vnear and nearest[vnear];
add e to F;

distance[vnear] = -1; // Add vertex indexed by
for (i=2;i<=n;i++)// vhearto.
if (W[i][vnear] < distance[i]){ // For each vertex not in
distanceli]l= WI[i] [vnear]; // Y, update its distance
nearest [i] = vnear; // fromY.

24

An example
1. Vertex v, is selected first. m m

1 /) 2 3 4 5
V1 V2
/4 11 1 1 1 3

F=Q;

for (i=2;i<=n;i++){
nearest [i] = 1; // For all vertices, initialize v1
distance [i] = W[1][i] ; // to be the nearest vertex in

25

2. Vertex v, is selected because

N =, B

repeat (n - 1 times){ min = oo;
for(i=2;i<=n;i++)
if (0 < distance[i] < min){
min = distanceli];
vhear =i;}
e = edge connecting vertices indexed by vnear and nearest[vnear];
add eto F;
distance[vnear] = -1;
for(i=2;i<=n;i++)
if (W[il[vnear] < distance[i]){
distanceli]l= WI[i] [vnear];
nearest [i] = vnear; }

26

3. Vertex vy is selected because

A nearest I distance
@ | />

2 3 4 5 2 3 4 5
; 11 1 1 1 3
3 6 - S
2 -1 6
3 3 1 4 2

repeat (n - 1 times){ min = oo;
for(i=2;i<=n;i++)
if (0 < distance[i] < min){
min = distanceli];
vhear =i;}
e = edge connecting vertices indexed by vnear and nearest[vnear];
add eto F;
distance[vnear] = -1;
for(i=2;i<=n;i++)
if (W[il[vnear] < distance[i]){
distanceli]l= WI[i] [vnear];
nearest [i] = vnear; }

27

4. Vertex v, is selected because
it is nearest to {vy, o, v}

2 3 4 5 2 (8 |4 |2
1 11 1 1 3
' N B 6
3 3 -1 4 2
-1

repeat (n - 1 times){ min = oo;
for (i=2;i<=n;i++)
if (0 < distance[i] < min){
min = distanceli];
vhear =i;}
e = edge connecting vertices indexed by vnear and nearest[vnear];
add eto F;
distance[vnear] = -1;
for(i=2;i<=n;i++)
if (W[i]l[vnear] < distance[i]){
distanceli]l= WI[i] [vnear];
nearest [i] = vnear; }

28

5. Vertex v, is selected.

2 3 4 5 2 3 4 5
1 1 1 1 1 3
N N B 6
3 3 -1 4 2
-1
-1

repeat (n - 1 times){ min = oo;
for(i=2;i<=n;i++)
if (0 < distance[i] < min){
min = distanceli];
vhear =i;}
e = edge connecting vertices indexed by vnear and nearest[vnear];
add eto F;
distance[vnear] = -1;
for(i=2;i<=n;i++)
if (W[il[vnear] < distance[i]){
distanceli]l= WI[i] [vnear];
nearest [i] = vnear; }

29

Every-case time complexity

o Basic Operation: There are two loops, each with
n — 1 iterations, inside the repeat loop.
Executing the instructions inside each of them
can be considered to be doing the basic
operation once.

o Input size: n, the number of vertices
o Then:

T(n)=2(n-1)(n-1) € ®(n?)

30

Proof

A Lemma 4.1 Let G = (V, E) be a connected, weighted, undirected graph: let
F be a promising subset of IV; and let Y be the set of vertices connected by the
edges in F'. If e is an edge of minimum weight that connects a vertex in Y to
a vertex in V' — Y, then F'U {e} is promising.

o Theorem 4.1: Prim’s
algorithm always
produces a minimum
spanning tree

31

Comparing Prim’s algorithm with
Kruskal’s algorithm

o Prim’s algorithm: T(n) € ®(n?)
o Kruskal’s algorithm:
= W(m, n) e ©(mlgm)
on-1<m<n(n-1)/2
O Sparse graph
m Kruskal's algorithm should be faster.

o Highly connected
m Prim’'s algorithm should be faster.

32

Dijkstra’s algorithm

shortest paths from one source to all the others

| eSS lo s 465!

33

Diykstra’s algorithm

shortest paths from one source to all the others

Y ={vl};
F=Q;
while (the instance is not solved) {

select a vertex v from V - Y, that has a shortest
path from v1, using only vertices in Y as
intermediates;

//selection procedure and feasibility check
add the new vertex v to Y;

add the edge (on the shortest path) that touches v
to F;

if (Y == V) the instance is solved;
// solution check

An example (1)

Compute shortest paths from v;.

35

An example (2)

1. Vertex v; is selected because
it is nearest to v;.

2. Vertex v, is selected because it
has the shortest path from v, using

only vertices in {vs} as intermediates.

36

An example (3)

3. Vertex v is selected because it
has the shortest path from v,
using only vertices in {vy, Vs}
as intermediates.

4. The shortest path from v, to v, is
[vy, Vs, Va4, Vol

37

Auxiliary arrays

O Touch[i] = index of vertex v in Y such that
the edge <v, v,> is the last edge on the
current shortest path from v, to v; using
only vertices in Y as intermediates

Cuwl oais Gl a5 2,8 4w pwd Sl 0,5 U'.’.)"'T
o length[i] = length of the current shortest

path from v, to v; using only vertices in Y
as intermediates

38

The algorithm (1)

o Algorithm 4.3: Dijkstra's Algorithm
void dijkstra (int n, const nhumber W/][],
set_of_edges&F) {
index /, vnear;
edge ¢;
index touch [2 .. n]; number /length [2 .. n]
F=0,;
for (i = 2; i<=n; i++){
touch [i] = 1;
length [i] = WI[1] [i];

4

39

The algorithm (2)

repeat (n - 1 times){
min = oo;
for (i=2;,i< =n;i++)
if (0 < /length [i] < min) {
min = length [i];
vhear = i;}
e = edge from vertex indexed by touch [vnear] to
vertex indexed by vnear;
add e to F;
for (i=2;i< =n;i++)
if (length [vnear] + W/[vnear] [i] < length [i]){
length[i] = length[vnear] + W[vnear][i];
touch[i] = vnear;}
length[vnear] = -1;

40

Compute shortest paths from v;.

for (i = 2; i<= n; i++){
touch [i] = 1;
length [i] = W[1] [i];}

41

1. Vertex vy is selected because
it is nearest to v;.

2 3 4 5 2 3 4 5
1 1 1 1 7 4 6 1
5 2 -1
repeat (n - 1 times){ min = oo;
for(i=2;i<=n;i++)
if (0 < length [i] < min) {
min = length [i];
vhear =i;}
e = edge from vertex indexed by touch [vnear] to vertex indexed by vnear;
add e to F;

for(i=2;i<=n;i++)
if (length [vnear] + W[vnear] [i] < length [i]){
length[i] = length[vnear] + W[vnear][i];
touch[i] = vnear;}
length[vnear] = -1;}

42

2. Vertex v, is selected because it
has the shortest path from v, using

§ 2 3 4 5 2 3 4 5
g 1 1 1 1 /7 4 6 1
5 2 -1
4 5 -1
repeat (n - 1 times){ min = oo;
for(i=2;,i<=n;i++)
if (0 < length [i] < min) {
min = length [i];
vhnear = i;}
e = edge from vertex indexed by touch [vnear] to vertex indexed by vnear;
add e to F;

for(i=2;,i<=n;i++)
if (length [vnear] + W[vnear] [i] < length [i]){
length[i] = length[vnear] + W[vnear][i];
touch[i] = vnear;}

43
length[vnear] = -1;}

3. Vertex v; is selected because it
has the shortest path from v,
using only vertices in {v,, v}
as intermediates.

2 3 4 5 2 3 4 5
1 1 1 1 7 4 6 1
5 2 -1
4 5 -1
=1
repeat (n - 1 times){ min = oo;
for(i=2;i<=n;i++)
if (0 < length [i] < min) {
min = length [i];
vhear = i;}
e = edge from vertex indexed by touch [vnear] to vertex indexed by vnear;
add e to F;

for(i=2;i<=n;i++)
if (length [vnear] + W[vnear] [i] < length [i]){
length[i] = length[vnear] + W[vnear][i];
touch[i] = vnear;}

44
length[vnear] = -1;%}

4.The shortest path from v, to v, is
[v4, V5, Va, V2.

2 3 4 5 2 3 4 5
1 1 1 1 /7 4 6 1
5 2 -1
r 4 5 -1
] -1
-1
repeat (n - 1 times){ min = oo;
for(i=2;i<=n;i++)
if (0 < length [i] < min) {
min = length [i];
vhear = i;}
e = edge from vertex indexed by touch [vnear] to vertex indexed by vnear;
add e to F;

for(i=2;i<=n;i++)
if (length [vnear] + W[vnear] [i] < length [i]){
length[i] = length[vnear] + W[vnear][i];
touch[i] = vnear;}

45
length[vnear] = -1;%}

Every-case time complexity

o7T(n) = 2(n-1)2 (n?)

46

Diykstra vs Prim

repeat (n - 1 times){ min = oco;
for (i=2,i<=n;i++)
if (0 < length [i] < min) {

min = length [i];
vhear =i}

e = edge from vertex indexed by touch [vnear] to vertex indexed by vnear;

add e to F;
for (i=2;,i<=n;i++)
if (length [vnear] + W[vnear] [i] < length [i]){
length[i] = length[vnear] + W[vnear][i];
touch[i] = vnear;}
length[vnear] = -1;}

repeat (n - 1 times){ min = oo;
for (i=2;i<=n; i++)
if (0 < distancel[i] < min){
min = distanceli];
vhear =i}
e = edge connecting vertices indexed by vnear and nearest[vnear];
add e to F;
distance[vnear] = -1;
for (i=2;i<=n;i++)
if (W[il[vnear] < distancel[i]){
distancelil= WI[i] [vnear];
nearest [i] = vnear; }

47

Scheduling

Sxiosle;

Guple; g9 9o O
O gy J 5o b w5 eSS Sley ea)
.og'::) !.“ S :... :

o Minimize the total time in waiting and being
served (time in the system)

Sdgals gapyle; =Y
o scheduling with deadlines

48

(e 999) J3l 55 (samzgles

O
t1=5,t2=10,andt3=4
three jobs and their service times

S 0 S SHpa SeS losialb)ls > sl

49

The algorithm

sort the jobs by service time in nondecreasing
order;

while (the instance is not solved){

schedule the next job; // selection procedure
// feasibility check

if (there are no more jobs) // solution check
the instance is solved;

50

Proof

o Time complexity: W(n) € ©(nlgn)
o Theorem 4.3

The only schedule that minimizes the total time
in the system is one that schedules jobs in
nondecreasing order by service time

51

Multiple-server scheduling problem

o Server 1 serves jobs 1, (1+m), (1+2m), (1+3m),

o Server 2 serves jobs 2, (2+m), (2+2m), (3+3m),
O

o Server i serves jobs i, (i+m), (i+2m), (i+3m), ...
O

O

Server m serves jobs m, (m+m), (m+2m),
(m+3m), ...

52

Scheduling with deadlines
e L saybe;

g dwyp bl A lop o loy axly SO G5y slol (ganyloy dlus g9 ol o O
D510 0gw SO g (VYIS 0) cdpe SO
355g0 ol g w055 g9, s o b L5 15 51 DO

Job Deadline Profit

1 2 30
2 1 35
3 2 25
4 1 40 Carlin 'y yidiond Qo);‘ Cawd 4 iSO

53

Some terms

O Feasible sequence

= all the jobs in the sequence start by their
deadlines

O Feasible set

= there exists at least one feasible sequence for
the jobs in this set.

o Optimal sequence
= a feasible sequence with maximum total profit.

54

The algorithm

sort the jobs in nonincreasing order by profit;
S=0

while (the instance is not solved){
select next job; // selection procedure

if (S is feasible with this job added)
add this job to S;

if (there are no more jobs)
the instance is solved;

55

The formal algorithm

o Algorithm 4.4: Scheduling with Deadlines

void schedule (int n, const int deadline [],
sequence_of_integer& j)

{
//sorted jobs in nonincreasing order by profit
index j;
sequence_of_integer K;
J=1[1];
for (i=2;i<=n;i++)
{

K = J with / added according to nondecreasing
values of deadline[/];

if (K is feasible)
J=K;

56

Example

Job

-] O Ot = W DN =

Deadline

A Co — QO = = W

Profit
40
35
30
25
20
15
10

57

Example

L.

2.

(d

0.
7.

The final value of J1s [2, 1, 4].

J1s set to [1].

K 1s set to [2, 1] and 1s determined to be feasible.

J1s set to [2, 1] because K 1s feasible.

K 1s set to [2, 3, 1] and 1s rejected because it 1s not feasible.
Kis setto [2, 1, 4] and 1s determined to be feasible.

J1s set to [2, 1, 4] because K 1s feasible.

. Kissetto[2, 5, 1, 4] and 1s rejected because it 1s not feasible.

Kissetto [2. 1, 6, 4] and 1s rejected because it 1s not feasible.

Kissetto[2. 7,1, 4] and 1s rejected because it 1s not feasible.

58

Worst-case time complexity

O Basic operation: comparison
Instructions

o Input size: n, the number of jobs
O Time complexity:

= time for sorting: ®©(nlgn)

= comparisons in for-i loop:

2 [(i-1)+il=n*-1e6(n%

= Overall: W(n) € 6(n?%)

59

Theorem 4.4

o Algorithm 4.4 always produces an optimal
set of jobs

O

60

Huftfman code

Oedlaas

Slo 0,5 g5kwed s o0
o File: ababcbbbc

o Encoding scheme:
= a: 00, b: 01, c: 11
=a:10,b:0,c: 11

61

Prefix codes

Figure 4.9 @ Binary tree corresponding to Code 4.2.

62

Character | Frequency | Cl({Fixed-Length) C2 3 (Huffman)
a 16 000 10 00
An €Xample b 5 001 11110 1110
c 12 010 1110 110
d 17 011 110 01
e 10 100 11111 1111
f 25 101 0 10

Table 4.1 @ Three codes for the same file. C3 is optimal.

0 1
0 1 0 1
a:16 d:17] |f.25
0 1
c:12
0 1
(a) b:5 e:10 (b) b:5 e:10

Figure 4.10 e The binary character code for Code C2 in Example 4.7 appears in (a), while the one for Code
C3 (Huffman) appears in (b).

63

The number of bits taken to encode a file

bits(T) = Zn: frequency(ys.)depth(y/.)
1=1

64

An example of application (1)

) (9 [9 A [=

65

An example of application (2)

d:17] |f:25

66

An example of application (3)

a:16

d:17

f:25

67

An example of application (4)

f.25

68

An example of application (5)

a:16

33

d:17} |f:

e:10

e:10

69

Priority queue PQ

o Arrange n pointers to nodetype records in PQ so that for each
pointer p in PQ
p -> symbol = a distinct character in the file
p -> frequency = the frequency of that character in the file
p -> left = p -> right = NULL
for (i=1;i< =n-1; i++) { // There is no solution check; rather,
remove (PQ, p); // solution is obtained whenj=n - 1.
remove (PQ, q); // Selection procedure.
r = new nodetype; // There is no feasibility check.
r->left = p;
r->right = q;
r->frequency = p->frequency + g->frequency;
insert (PQ, r);
b
remove (PQ, r);
return r;

70

Proof

o Lemma 4.4

The binary tree corresponding to an optimal binary prefix
code is full. That is, every nonleaf has two children

o Theorem 4.5
Huffman’s algorithm produces an optimal binary code

T -

Figure 4.12 @ The branches rooted at v and w are swapped.

71

The knapsack problem

O The knapsack problem
m Let
S = {itemy, item,, ..., item_}

w; = weight of item;
p; = profit of item;
W = maximum weight the knapsack can hold

S5 SiqdlsS O

o The fractional knapsack problem

S 9 o (Sulgdles O
o The 0-1knapsack problem

72

S S (imdlgS Al > (sl p ailas > g,

O Item 1 2 3
o Profit 50% 60% 140%
oWeight 5 10 20
o Knapsack capacity = 30
39 Lemiio (bl lop T (65l o OO
O Total profit in the previous example
$50 + $140 + (5/10)(%$60) = $220

73

Se g o GindlsS dls > gl ailay > s

o The 0-1knapsack problem
m Let
S = {itemy, item,, ..., item_}
w; = weight of item;
p; = profit of item;
W = maximum weight the knapsack can hold
= Determine a subset A such that

> P is maximized subject to >\ <W
ItemeA temeA

74

A@QLSAJWJ}O‘) c\JL»a.:)} u._i.)9)_€bad.‘t.wo)d

oW = 30

$50

$60

$140

“51b

ltem 1

10 1b

ltem 2

20 Ib

ltem 3

301b
Max.

Knapsack

51Ib
Wasted

201b

51b

Greedy
solution

201b

$140f

1850

101b

Optimal
solution

Figure 4.13 @ A greedy solution and an optimal solution to the O-1 Knapsack problem.

$140

$60

75

