Chapter 4

Greedy Approach روش حریصانه

The idea

- □ دادهها یکی یکی انتخاب میشوند.
- □ هر انتخاب باید بهترین باشد، بدون توجه به انتخابهای قبلی یا در آینده.
- □ اغلب برای حل مسائل بهینهسازی استفاده میشود.
- □ بهینگی راه حل ارایه شده توسط الگوریتم حریصانه باید اثبات شود.

مثال: Ame پول خرد کردن

Amount owed: 36 cents

Step

Figure 4.1 • A greedy algorithm for giving change.

U.S. coins (penny(1), nickel(5), dime(10), quarter(25), half dollar(50))3

Coins

Amount owed: 16 cents

Step

Total Change

if we include a 12-

cent coin with the

does not always

coins, the

algorithm

optimal

U.S.

greedy

give an

solution.

1. Grab 12-cent coin

2. Reject dime

3. Reject nickel

4. Grab four pennies

Greedy solution: 16=12+1+1+1+1

Optimal solution: 16=10+5+1

The algorithm

```
while (there are more coins and the instance is not solved) {
  grab the largest remaining coin;
                               // selection procedure
  If (adding the coin makes the change exceed the amount owed)
       reject the coin;
                        // feasibility check
  else
       add the coin to the change;
  If (the total value of the change equals the amount owed)
                               // solution check
       the instance is solved;
```

Basic components in Greedy approach

- A selection procedure chooses the next item to add to the set. The selection is performed according to a greedy criterion that satisfies some locally optimal consideration at the time.
- A feasibility check determines if the new set is feasible by checking whether it is possible to complete this set in such a way as to give a solution to the instance.
- A solution check determines whether the new set constitutes a solution to the instance.

Minimum spanning trees درخت پوشای کمینه

🗖 تعریف درخت

Definition

An undirected graph G consists of a finite set V whose members are called the vertices of G, together with a set E of pairs of vertices in V. These pairs are called the edges of G. We denote G by

$$G=(V,E)$$
.

- □ دو روش حل برای یافتن درخت پوشای کمینه:
 - روش کراسکال (Kruskal)
 - **■** روش پریم (Prim)

(a) A connected, weighted, undirected graph G.

(b) If (v_4, v_5) were removed from this subgraph, the graph would remain connected.

مثال: گراف و چند درخت متناظر با آن

(c) A spanning tree for G.

(d) A minimum spanning tree for G.

Figure 4.3 • A weighted graph and three subgraphs.

An illustration (1)

Determine a minimum spanning tree.

1. Edges are sorted by weight.

$$(v_1, v_2)$$
 1

$$(v_3, v_5)$$
 2

$$(v_1, v_3)$$
 3

$$(v_2, v_3)$$
 3

$$(V_3,V_4)$$
 4

$$(v_4, v_5)$$
 5

$$(v_2, v_4)$$
 6

An illustration (2)

An illustration (3)

An illustration (4)

Data types and operations

Data types

- index i;
- set_pointer p, q;

Operations

- initial(n) initializes n disjoint subsets, each of which contains exactly one of the indices between 1 and n.
- p = find(i) makes p point to the set containing index i.
- merge(p,q) merges the two sets, to which p and q point, into the set.
- equal(p,q) returns true if p and q both point to the same set.

Kruskal's algorithm

```
F = \varnothing;
                                                Initialize set of
                                              // edges to empty.
create disjoint subsets of V, one for each
vertex and containing only that vertex;
sort the edges in E in nondecreasing order;
while (the instance is not solved) {
  select next edge;
                                            // selection procedure
  if (the edge connects two vertices in
                                          // feasibility check
                      disjoint subsets){
      merge the subsets;
      add the edge to F;
 if (all the subsets are merged)
                                            // solution check
     the instance is solved;
```

Kruskal's algorithm

```
void kruskal (int n, int m, set_of_edges E, set_of_edges& F) {
   index i, j;
   set_pointer p, q;
   edge e;
  Sort the m edges in E by weight in nondecreasing order;
  F = \emptyset:
   initial (n); // Initialize n disjoint subsets.
   while (number of edges in F is less than n - 1){
        e = edge with least weight not yet considered;
        i, j = indices of vertices connected by e;
        p = find(i);
        q = find(j);
        if (! equal(p, q)){
                merge(p, q);
                add e to F;
```

Worst-case time complexity

- Basic operation: a comparison instruction
- Input size: n, the number of vertices, and m, the number of edges
- Analysis:
 - The time to sort the edges: $W(m) \in \Theta(m | gm)$
 - The time in the while loop: $W(m) \in \Theta(m \lg m)$
 - The time to initialize n disjoint sets: $T(n) \in \Theta(n)$
 - Overall: $W(m, n) \in \Theta(m \lg m)$
 - In the worst case every vertex can be connected to every other vertex m=n(n-1)/2, Therefore W(m,n) = Θ(n²lgn)

Proof

▲ Lemma 4.2 Let G = (V, E) be a connected, weighted, undirected graph; let F be a promising subset of E; and let e be an edge of minimum weight in E - F such that $F \cup \{e\}$ has no simple cycles. Then $F \cup \{e\}$ is promising.

Theorem 4.2: Kruskal's algorithm always produces a minimum spanning tree

Prim's algorithm

```
F = \emptyset // Initialize set of edges to empty.
Y = \{v1\} // Initialize set of vertices to
             // contain only the first one.
while (the instance is not solved){
  select a vertex in V - Y that is nearest to Y;
             // selection procedure and feasibility check
  add the vertex to Y;
  add the edge to F;
  if (Y == V)// solution check the instance is solved;
```


Adjacency matrix

$$W\left[i
ight]\left[j
ight] = \left\{egin{array}{l} ext{weight on edge} \ \infty \ 0 \end{array}
ight.$$

	1	2	3	4	5
1	0	1	3	00	00
2	1	0	3	6	00
3	3	3	0	4	2
4	∞	1 0 3 6	4	0	5
5	∞	∞	2	5	0

if there is an edge between v_i and v_j if there is no edge between v_i and v_j if i = j.

Figure 4.5 • The array representation W of the graph in Figure 4.3(a).

Prim's algorithm

```
nearest[i] = index of the vertex in Y nearest to v_i
distance[i] = weight on edge between <math>v_i and the vertex indexed
              by nearest[i]
Algorithm 4.1: Prim's Algorithm
void prim (int n, const number W[][], set_of_edges& F)
{
   index i, vnear;
   number min;
   edge e;
   index nearest[2..n];
   number distance [2..n];
   F = \emptyset;
   for (i = 2; i <= n; i++){}
        nearest [i] = 1; // For all vertices, initialize v1
        distance [i] = W[1][i]; // to be the nearest vertex in
```

Prim's algorithm (cont'd)

```
repeat (n - 1 \text{ times}){
                                 // Add all n - 1 vertices to Y.
     min = \infty;
     for (i = 2; i <= n; i++) // Check each vertex for being nearest to Y.
               if (0 \le distance[i] < min){
                        min = distance[i];
                        vnear = i;
     e = edge connecting vertices indexed by vnear and nearest[vnear];
     add e to F;
     distance[vnear] = -1; // Add vertex indexed by
     for (i = 2; i \le n; i++) // vnear to Y.
               if (W[i][vnear] < distance[i]) { // For each vertex not in
                        distance[i] = W[i] [vnear]; // Y, update its distance
                        nearest [i] = vnear; // from Y.
               }
```

1. Vertex v_1 is selected first.

nearest							
2	3	4	5				
1	1	1	1				

```
F = \emptyset;

for (i = 2; i <= n; i++){

nearest [i] = 1; // For all vertices, initialize v1

distance [i] = W[1][i]; // to be the nearest vertex in

}
```

2. Vertex v_2 is selected because it is nearest to $\{v_1\}$.

nearest			distance				
2	3	4	5	2	3	4	5
1	1	1	1	1	3		
		2		-1		6	

3. Vertex v_3 is selected because it is nearest to $\{v_1, v_2\}$.

nearest				distance				
2	3	4	5	2	3	4	5	
1	1	1	1	1	3			
		2		-1		6		
		3	3		-1	4	2	

4. Vertex v_2 is selected because it is nearest to $\{v_1, v_2, v_3\}$.

nearest			distance					
2	3	4	5		2	3	4	5
1	1	1	1		1	3		
		2			-1		6	
		3	3			-1	4	2
								-1

```
repeat (n - 1 times){ min = \infty;

for (i = 2; i <= n; i++)

if (0 ≤ distance[i] < min){

min = distance[i];

vnear = i;}

e = edge connecting vertices indexed by vnear and nearest[vnear];

add e to F;

distance[vnear] = -1;

for (i = 2; i <= n; i++)

if (W[i][vnear] < distance[i]){

distance[i] = W[i][vnear];

nearest[i] = vnear;}
```

5. Vertex v_4 is selected.

Every-case time complexity

- Basic Operation: There are two loops, each with n − 1 iterations, inside the repeat loop. Executing the instructions inside each of them can be considered to be doing the basic operation once.
- □ Input size: *n*, the number of vertices
- Then:

$$T(n) = 2(n-1)(n-1) \in \Theta(n^2)$$

Proof

▲ Lemma 4.1 Let G = (V, E) be a connected, weighted, undirected graph; let F be a promising subset of E; and let Y be the set of vertices connected by the edges in F. If e is an edge of minimum weight that connects a vertex in Y to a vertex in V - Y, then $F \cup \{e\}$ is promising.

Theorem 4.1: Prim's algorithm always produces a minimum spanning tree

Comparing Prim's algorithm with Kruskal's algorithm

- □ Prim's algorithm: $T(n) \in \Theta(n^2)$
- Kruskal's algorithm:
 - $W(m, n) \in \Theta(m \lg m)$
- $n 1 \le m \le n(n-1)/2$
- Sparse graph
 - Kruskal's algorithm should be faster.
- Highly connected
 - Prim's algorithm should be faster.

Dijkstra's algorithm

shortest paths from one source to all the others

الگوریتم دایکسترا کوتاهترین مسیر از مبدا به همه راسها

Dijkstra's algorithm

shortest paths from one source to all the others

```
Y = \{v1\};
F = \emptyset;
while (the instance is not solved) {
  select a vertex v from V - Y, that has a shortest
  path from v1, using only vertices in Y as
  intermediates;
            //selection procedure and feasibility check
  add the new vertex v to Y;
  add the edge (on the shortest path) that touches v
  to F;
  if (Y == V) the instance is solved;
            // solution check
```

An example (1)

Compute shortest paths from v_1 .

An example (2)

1. Vertex v_5 is selected because it is nearest to v_1 .

 Vertex v₄ is selected because it has the shortest path from v₁ using only vertices in {v₅} as intermediates.

An example (3)

3. Vertex v_3 is selected because it has the shortest path from v_1 using only vertices in $\{v_4, v_5\}$ as intermediates.

4. The shortest path from v_1 to v_2 is $[v_1, v_5, v_4, v_2]$.

Auxiliary arrays

□ Touch[i] = index of vertex v in Y such that the edge $\langle v, v_i \rangle$ is the last edge on the current shortest path from v_1 to v_i using only vertices in Y as intermediates

آخرین گره برای دسترسی به گرهی که انتخاب نشده است

□ length[i] = length of the current shortest path from v_1 to v_i using only vertices in Y as intermediates

The algorithm (1)

Algorithm 4.3: Dijkstra's Algorithm **void** *dijkstra* (**int** *n*, **const number** *W*[][], set_of_edges&F) { index i, vnear; edge e; **index** *touch* [2 .. *n*]; **number** *length* [2 .. *n*]; $F = \emptyset$; for (i = 2; i <= n; i++){ touch $\lceil i \rceil = 1$; length [i] = W[1][i];

The algorithm (2)

```
repeat (n - 1 times){
  min = \infty;
  for (i = 2; i < = n; i++)
       if (0 \le length \lceil i \rceil < min) {
               min = length [i];
               vnear = i; 
       e = edge from vertex indexed by touch [vnear] to
  vertex indexed by vnear;
       add e to F;
       for (i = 2; i < = n; i++)
               if (length [vnear] + W[vnear] [i] < length [i]){</pre>
                      length[i] = length[vnear] + W[vnear][i];
                      touch[i] = vnear;}
       length[vnear] = -1;
```

Compute shortest paths from v_1 .

touch					
2	3	4	5		
1	1	1	1		

length				
2	3	4	5	
7	4	6	1	

1. Vertex v_5 is selected because it is nearest to v_1 .

touch					
2	3	4	5		
1	1	1	1		
		5			

length					
2	3	4	5		
7	4	6	1		
		2	-1		

```
repeat (n-1 \text{ times}){ min = \infty;

for (i = 2; i < = n; i++)

if (0 \le length [i] < min) {

min = length [i];

vnear = i;}

e = edge from vertex indexed by touch [vnear] to vertex indexed by vnear;

add e to F;

for (i = 2; i < = n; i++)

if (length [vnear] + W[vnear] [i] < length [i]){

length[i] = length[vnear] + W[vnear][i];

touch[i] = vnear;}

length[vnear] = -1;}
```

 Vertex v₄ is selected because it has the shortest path from v₁ using only vertices in {v₅} as intermediates.

to	ucł	1		length				
2	3	4	5		2	3	4	5
1	1	1	1		7	4	6	1
		5					2	-1
4					5		-1	

```
repeat (n-1 \text{ times}){ min = \infty;

for (i = 2; i < = n; i++)

if (0 \le length [i] < min) {

min = length [i];

vnear = i;}

e = edge from vertex indexed by touch [vnear] to vertex indexed by vnear;

add e to F;

for (i = 2; i < = n; i++)

if (length [vnear] + W[vnear] [i] < length [i]){

length[i] = length[vnear] + W[vnear][i];

touch[i] = vnear;}

length[vnear] = -1;}
```

3. Vertex v_3 is selected because it has the shortest path from v_1 using only vertices in $\{v_4, v_5\}$ as intermediates.

to	uch			length				
2	3	4	5		2	3	4	5
1	1	1	1		7	4	6	1
		5					2	-1
4					5		-1	
						-1		

```
repeat (n-1 \text{ times}){ min = \infty;

for (i = 2; i < = n; i++)

if (0 \le length [i] < min) {

min = length [i];

vnear = i;}

e = edge from vertex indexed by touch [vnear] to vertex indexed by vnear;

add e to F;

for (i = 2; i < = n; i++)

if (length [vnear] + W[vnear] [i] < length [i]){

length[i] = length[vnear] + W[vnear][i];

touch[i] = vnear;}

length[vnear] = -1;}
```

4. The shortest path from v_1 to v_2 is $[v_1, v_5, v_4, v_2]$.

touch						
2	3	4	5			
1	1	1	1			
		5				
4						

length				
2	3	4	5	
7	4	6	1	
		2	-1	
5		-1		
	-1			
-1				

```
repeat (n-1 \text{ times}){ min = \infty;

for (i = 2; i < = n; i++)

if (0 \le length [i] < min) {

min = length [i];

vnear = i;}

e = edge from vertex indexed by touch [vnear] to vertex indexed by vnear;

add e to F;

for (i = 2; i < = n; i++)

if (length [vnear] + W[vnear] [i] < length [i]){

length[i] = length[vnear] + W[vnear][i];

touch[i] = vnear;}

length[vnear] = -1;}
```

Every-case time complexity

$$\Box T(n) = 2(n-1)^2 \in (n^2)$$

Dijkstra vs Prim

```
repeat (n - 1 \text{ times}){
                                min = \infty;
    for (i = 2; i < = n; i++)
           if (0 \le length [i] < min) {
                      min = length [i];
                      vnear = i;
    e = edge from vertex indexed by touch [vnear] to vertex indexed by vnear;
           add e to F;
           for (i = 2; i < = n; i++)
                      if (length [vnear] + W[vnear] [i] < length [i]){</pre>
                                  length[i] = length[vnear] + W[vnear][i];
                                  touch[i] = vnear;
           length[vnear] = -1;
repeat (n - 1 times){
                                  min = \infty;
            for (i = 2; i \le n; i++)
                       if (0 \le distance[i] < min){
                                  min = distance[i];
                                  vnear = i;
     e = edge connecting vertices indexed by vnear and nearest[vnear];
     add e to F;
     distance[vnear] = -1;
     for (i = 2; i <= n; i++)
                       if (W[i][vnear] < distance[i]){
                                  distance[i] = W[i] [vnear];
                                  nearest [i] = vnear; }
     }
```

Scheduling زمانبندی

- □ دو نوع زمانبندی
- ۱- جمع زمانی که کارها منتظرند یا در حال سرویس گرفتن هستند کمینه شود.
- Minimize the total time in waiting and being served (time in the system)

۲- زمانبندی بامهلت

scheduling with deadlines

زمانبندی نوع اول (بدون مهلت)

Compute the optimal scheduling:

 $t_1 = 5$, $t_2 = 10$, and $t_3 = 4$ three jobs and their service times

■ برای حل کارها را به ترتیب از کوچک به بزرگ مرتب می کنیم ا

The algorithm

```
sort the jobs by service time in nondecreasing
order;
while (the instance is not solved){
   schedule the next job; // selection procedure
                            // feasibility check
   if (there are no more jobs) // solution check
          the instance is solved;
```

Proof

- □ Time complexity: $W(n) \in \Theta(n \lg n)$
- □ Theorem 4.3

The only schedule that minimizes the total time in the system is one that schedules jobs in nondecreasing order by service time

Multiple-server scheduling problem

 \square Server 1 serves jobs 1, (1+m), (1+2m), (1+3m), \square Server 2 serves jobs 2, (2+m), (2+2m), (3+3m), \square Server i serves jobs i, (i+m), (i+2m), (i+3m), ... \square Server m serves jobs m, (m+m), (m+2m), (m+3m), ...

Scheduling with deadlines زمانبندی با مهلت

- در این نوع مساله زمانبندی، انجام هر کار، یک واحد زمان میبرد تا به پایان برسد و یک مهلت (ضربالاجل) و یک سود دارد.
 - □ اگر کار قبل یا در مهلت شروع شود، سود حاصل می شود.

Job	Dead line	Profit	
1	2	3 0	
2	1	35	
3	2	25	
4	1	40	□ هدف: به دست آوردن بیشترین منفعت

Some terms

- Feasible sequence
 - all the jobs in the sequence start by their deadlines
- Feasible set
 - there exists at least one feasible sequence for the jobs in this set.
- Optimal sequence
 - a feasible sequence with maximum total profit.

The algorithm

```
sort the jobs in nonincreasing order by profit;
S = \emptyset
while (the instance is not solved){
    select next job; // selection procedure
    if (S is feasible with this job added)
          add this job to S;
    if (there are no more jobs)
          the instance is solved;
```

The formal algorithm

```
Algorithm 4.4: Scheduling with Deadlines
  void schedule (int n, const int deadline [],
  sequence_of_integer& j)
       //sorted jobs in nonincreasing order by profit
       index i;
       sequence_of_integer K;
       J = \lceil 1 \rceil;
       for (i = 2; i <= n; i++)
              K = J with i added according to nondecreasing
              values of deadline[i];
              if (K is feasible)
                     J = K;
```

Example

Job	Dead line	Profit
1	3	40
2	1	35
3	.1	30
4	3	25
5	1 .	20
6	3	15
7	2	10

Example

- 1. *J* is set to [1].
- 2. *K* is set to [2, 1] and is determined to be feasible.
 - J is set to [2, 1] because K is feasible.
- 3. *K* is set to [2, 3, 1] and is rejected because it is not feasible.
- 4. K is set to [2, 1, 4] and is determined to be feasible.
 - J is set to [2, 1, 4] because K is feasible.
- 5. *K* is set to [2, 5, 1, 4] and is rejected because it is not feasible.
- 6. *K* is set to [2, 1, 6, 4] and is rejected because it is not feasible.
- 7. *K* is set to [2, 7, 1, 4] and is rejected because it is not feasible.

The final value of J is [2, 1, 4].

Worst-case time complexity

- Basic operation: comparison instructions
- □ Input size: *n*, the number of jobs
- Time complexity:
 - time for sorting: $\Theta(n | gn)$
 - comparisons in for-i loop:

$$\sum_{i=2} [(i-1)+i] = n^2 - 1 \in \Theta(n^2)$$

■ Overall: $W(n) \in \Theta(n^2)$

Theorem 4.4

- Algorithm 4.4 always produces an optimal set of jobs
- Proof: induction on the number of jobs *n*

Huffman code

كدهافمن

□ در فشردهسازی کاربرد دارد.

- □ File: ababcbbbc
- Encoding scheme:
 - a: 00, b: 01, c: 11
 - **a**: 10, b: 0, c: 11

Prefix codes

Figure 4.9 • Binary tree corresponding to Code 4.2.

An example

Character	Frequency	C1(Fixed-Length)	C2	C3 (Huffman)
a	16	000	10	00
b	5	001	11110	1110
c	12	010	1110	110
d	17	011	110	01
e	10	100	11111	1111
f	25	101	0	10

Table 4.1 • Three codes for the same file. C3 is optimal.

Figure 4.10 ● The binary character code for Code C2 in Example 4.7 appears in (a), while the one for Code C3 (Huffman) appears in (b).

The number of bits taken to encode a file

$$bits(T) = \sum_{i=1}^{n} frequency(v_i) depth(v_i)$$

□ Compute Bits(C1), Bits(C2), and Bits(C3)

An example of application (1)

b:5 e:10 c:12 a:16 d:17 f:25

An example of application (2)

An example of application (3)

An example of application (4)

An example of application (5)

Priority queue PQ

 $\ \square$ Arrange n pointers to nodetype records in PQ so that for each pointer p in PQ

```
p -> symbol = a distinct character in the file
p -> frequency = the frequency of that character in the file
p \rightarrow left = p \rightarrow right = NULL
for (i = 1; i < n-1; i++) { // There is no solution check; rather,
   remove (PQ, p); // solution is obtained when i = n - 1.
   remove (PQ, q); // Selection procedure.
   r = new nodetype; // There is no feasibility check.
   r->left = p;
   r->right = <math>q;
   r->frequency = p->frequency + q->frequency;
   insert (PQ, r);
}
remove (PQ, r);
return r;
```

Proof

Lemma 4.4

The binary tree corresponding to an optimal binary prefix code is full. That is, every nonleaf has two children

□ Theorem 4.5

Huffman's algorithm produces an optimal binary code

Figure 4.12 • The branches rooted at v and w are swapped.

The knapsack problem مساله کولهپشتی

- The knapsack problem
 - Let

```
\square S = {item_1, item_2, ..., item_n}
```

- \square w_i = weight of *item*_i
- $p_i = profit of item_i$
- \square W = maximum weight the knapsack can hold
 - □ كولەپشتى كسرى
- The fractional knapsack problem
 - □ کولهپشتی صفر و یک

The 0-1knapsack problem

روش حریصانه برای حل مساله کولهپشتی کسری

- □ Item 1 2 3
- □ Profit 50\$ 60\$ 140\$
- Weight 5 10 20
- Knapsack capacity = 30
 - □ مرتبسازی آیتمها بر اساس منفعت وزنی
- Total profit in the previous example \$50 + \$140 + (5/10)(\$60) = \$220

روش حریصانه برای حل مساله کولهپشتی صفر و یک

The 0-1knapsack problem

- Let
 - \square S = { $item_1$, $item_2$, ..., $item_n$ }
 - $w_i = weight of item_i$
 - $p_i = profit of item_i$
 - \square W = maximum weight the knapsack can hold
- Determine a subset A such that

$$\sum_{item_i \in A} p_i \quad is \quad \max_i imized \quad subject \quad to \quad \sum_{item_i \in A} w_i \leq W$$

در مساله صفر و یک، حریصانه راه حل بهینه نمی دهد

Figure 4.13 • A greedy solution and an optimal solution to the 0-1 Knapsack problem.